[1]李红丹,帅璐宇,徐雪环,等. 基于改进YOLO v7的草莓成熟度检测方法[J]. 四川农业大学学报,2024,42(3):561-571.
[2]黎施欣,范小平. 图像处理与识别在果蔬成熟度监测中的研究及应用[J]. 包装工程,2024,45(3):153-164.
[3]刘永波,高文波,何鹏,等. 基于改进ResNet50模型的自然环境下苹果物候期识别[J]. 智慧农业(中英文),2023,5(2):13-22.
[4]李扬,腰彩红,高冠群,等. 一种基于YOLO v5的草莓多阶段目标检测方法[J]. 天津农业科学,2022,28(11):81-90.
[5]汤泽政,伍奕桦,徐新明,等. 基于改进YOLO v7-Tiny的成熟草莓识别模型研究[J]. 江西农业大学学报,2023,45(6):1528-1542.
[6]杜芳芳,王丹,杨强. 基于图像处理的成熟草莓检测技术研究[J]. 农机化研究,2024,46(4):230-233,238.
[7]李茂,肖洋轶,宗望远,等. 基于改进YOLO v8模型的轻量化板栗果实识别方法[J]. 农业工程学报,2024,40(1):201-209.
[8]窦智,高浩然,刘国奇,等. 轻量化YOLO v8的小样本钢板缺陷检测算法[J]. 计算机工程与应用,2024,60(9):90-100.
[9]Wang W H,Dai J F,Chen Z,et al. InternImage:exploring large-scale vision foundation models with deformable convolutions[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Vancouver,BC,Canada:IEEE,2023:14408-14419.
[10]Yang Z Y,Shen Y Y,Shen Y F. Football referee gesture recognition algorithm based on YOLO v8s[J]. Frontiers in Computational Neuroscience,2024,18:1341234.
[11]郑文轩,杨瑛. 基于频域数据增强与轻量化YOLO v7模型的成熟期香梨目标检测方法[J]. 农业机械学报,2024,55(5):244-253.
[12]Ouyang D L,He S,Zhang G Z,et al. Efficient multi-scale attention module with cross-spatial learning[C]//ICASSP 2023-2023 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP).Rhodes Island,Greece:IEEE,2023:1-5.
[13]彭朝琴,李奇聪,陈娟,等. 基于GRU和改进注意力机制的多信息融合的EMA故障诊断方法[J/OL]. 北京航空航天大学学报,2023:1-16(2023-10-25)[2024-05-07]. https://doi.org/10.13700/j.bh.1001-5965.2023.0584.
[14]高昂,卢传兵,任龙龙,等. 基于改进YOLOX-s的苹果花生长状态检测方法及验证分析[J]. 中国农机化学报,2023,44(8):162-167.
[15]Coleman G R Y,Kutugata M,Walsh M J,et al. Multi-growth stage plant recognition:a case study of Palmer amaranth (Amaranthus palmeri) in cotton (Gossypium hirsutum)[J]. Computers and Electronics in Agriculture,2024,217:108622.
[16]刘莫尘,褚镇源,崔明诗,等. 基于改进YOLO v8-Pose的红熟期草莓识别和果柄检测[J]. 农业机械学报,2023,54(增刊2):244-251.
[1]梁万杰,曹宏鑫.基于卷积神经网络的水稻虫害识别[J].江苏农业科学,2017,45(20):241.
Liang Wanjie,et al.Identification of rice insect pests based on CNN model[J].Jiangsu Agricultural Sciences,2017,45(5):241.
[2]赵建敏,李艳,李琦,等.基于卷积神经网络的马铃薯叶片病害识别系统[J].江苏农业科学,2018,46(24):251.
Zhao Jianmin,et al.Potato leaf disease identification system based on convolutional neural network[J].Jiangsu Agricultural Sciences,2018,46(5):251.
[3]李懿超,沈润平,黄安奇.基于深度学习的湘赣鄂地区植被变化及其影响因子关系模型[J].江苏农业科学,2019,47(03):213.
Li Yichao,et al.Study on relational model between vegetation change and its impact factors based on deep learning in Hunan, Jiangxi and Hubei areas[J].Jiangsu Agricultural Sciences,2019,47(5):213.
[4]刘嘉政.基于深度迁移学习模型的花卉种类识别[J].江苏农业科学,2019,47(20):231.
Liu Jiazheng.Flower species identification based on deep transfer learning model[J].Jiangsu Agricultural Sciences,2019,47(5):231.
[5]荆伟斌,胡海棠,程成,等.基于深度学习的地面苹果识别与计数[J].江苏农业科学,2020,48(05):210.
Jing Weibin,et al.Recognition and counting of ground apples based on deep learning[J].Jiangsu Agricultural Sciences,2020,48(5):210.
[6]罗巍,陈曙东,王福涛,等.基于深度学习的大型食草动物种群监测方法[J].江苏农业科学,2020,48(20):247.
Luo Wei,et al.Monitoring method of large herbivore population based on deep learning[J].Jiangsu Agricultural Sciences,2020,48(5):247.
[7]孙孝龙,徐森,周卫阳,等.基于物联网和深度学习的养蚕智能监控系统设计[J].江苏农业科学,2020,48(21):241.
Sun Xiaolong,et al.Design of an intelligent monitoring system for sericulture based on internet of things and deep learning[J].Jiangsu Agricultural Sciences,2020,48(5):241.
[8]康飞龙,李佳,刘涛,等.多类农作物病虫害的图像识别应用技术研究综述[J].江苏农业科学,2020,48(22):22.
Kang Feilong,et al.Application technology of image recognition for various crop diseases and insect pests: a review[J].Jiangsu Agricultural Sciences,2020,48(5):22.
[9]李彧,余心杰,郭俊先.基于全卷积神经网络方法的玉米田间杂草识别[J].江苏农业科学,2022,50(6):93.
Li Yu,et al.Weed recognition in corn field based on fully convolutional neural network (FCN) method[J].Jiangsu Agricultural Sciences,2022,50(5):93.
[10]孙东来,王继超,陈科,等.基于Ghost-YOLOv3-2算法的2尺度猪目标检测[J].江苏农业科学,2022,50(7):189.
Sun Donglai,et al.Two-scale pig target detection based on Ghost-YOLOv3-2[J].Jiangsu Agricultural Sciences,2022,50(5):189.