[1]许冠芝,王泽民,李成强. 基于深度学习的番茄叶部病害识别模型[J]. 微处理机,2020,41(3):30-36.
[2]马宇,单玉刚,袁杰. 基于三通道注意力网络的番茄叶部病害识别[J]. 科学技术与工程,2021,21(25):10789-10795.
[3]胡志伟,杨华,黄济民,等. 基于注意力残差机制的细粒度番茄病害识别[J]. 华南农业大学学报,2019,40(6):124-132.
[4]Putra I K G D,Fauzi R,Witarsyah D,et al. Classification of tomato plants diseases using convolutional neural network[J]. International Journal on Advanced Science,Engineering and Information Technology,2020,10(5):1821-1827.
[5]Abbas A,Jain S,Gour M,et al. Tomato plant disease detection using transfer learning with C-GAN synthetic images[J]. Computers and Electronics in Agriculture,2021,187:106279.
[6]Fuentes A,Yoon S,Kim S C,et al. A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition[J]. Sensors,2017,17(9):2022.
[7]张友为,王鑫鑫,范晓飞,等. 基于深度学习的玉米和番茄病虫害检测技术研究进展[J]. 江苏农业科学,2024,52(10):10-20.
[8]陶兆胜,石鑫宇,王勇,等. 基于改进YOLO v5s的番茄叶片病害检测方法[J]. 沈阳农业大学学报,2023,54(6):712-721.
[9]倪智涛,胡伟健,李宝山,等. 一种基于图像分类与目标检测协同的番茄细粒度病害识别方法[J]. 江苏农业科学,2023,51(22):221-228.
[10]周巧黎,马丽,曹丽英,等. 基于改进轻量级卷积神经网络MobileNet v3的番茄叶片病害识别[J]. 智慧农业(中英文),2022,4(1):47-56.
[11]李梦洁,董峦. 基于PyTorch的机器翻译算法的实现[J]. 计算机技术与发展,2018,28(10):160-163,167.
[1]梁万杰,曹宏鑫.基于卷积神经网络的水稻虫害识别[J].江苏农业科学,2017,45(20):241.
Liang Wanjie,et al.Identification of rice insect pests based on CNN model[J].Jiangsu Agricultural Sciences,2017,45(5):241.
[2]赵建敏,李艳,李琦,等.基于卷积神经网络的马铃薯叶片病害识别系统[J].江苏农业科学,2018,46(24):251.
Zhao Jianmin,et al.Potato leaf disease identification system based on convolutional neural network[J].Jiangsu Agricultural Sciences,2018,46(5):251.
[3]李懿超,沈润平,黄安奇.基于深度学习的湘赣鄂地区植被变化及其影响因子关系模型[J].江苏农业科学,2019,47(03):213.
Li Yichao,et al.Study on relational model between vegetation change and its impact factors based on deep learning in Hunan, Jiangxi and Hubei areas[J].Jiangsu Agricultural Sciences,2019,47(5):213.
[4]刘嘉政.基于深度迁移学习模型的花卉种类识别[J].江苏农业科学,2019,47(20):231.
Liu Jiazheng.Flower species identification based on deep transfer learning model[J].Jiangsu Agricultural Sciences,2019,47(5):231.
[5]荆伟斌,胡海棠,程成,等.基于深度学习的地面苹果识别与计数[J].江苏农业科学,2020,48(05):210.
Jing Weibin,et al.Recognition and counting of ground apples based on deep learning[J].Jiangsu Agricultural Sciences,2020,48(5):210.
[6]罗巍,陈曙东,王福涛,等.基于深度学习的大型食草动物种群监测方法[J].江苏农业科学,2020,48(20):247.
Luo Wei,et al.Monitoring method of large herbivore population based on deep learning[J].Jiangsu Agricultural Sciences,2020,48(5):247.
[7]孙孝龙,徐森,周卫阳,等.基于物联网和深度学习的养蚕智能监控系统设计[J].江苏农业科学,2020,48(21):241.
Sun Xiaolong,et al.Design of an intelligent monitoring system for sericulture based on internet of things and deep learning[J].Jiangsu Agricultural Sciences,2020,48(5):241.
[8]康飞龙,李佳,刘涛,等.多类农作物病虫害的图像识别应用技术研究综述[J].江苏农业科学,2020,48(22):22.
Kang Feilong,et al.Application technology of image recognition for various crop diseases and insect pests: a review[J].Jiangsu Agricultural Sciences,2020,48(5):22.
[9]李彧,余心杰,郭俊先.基于全卷积神经网络方法的玉米田间杂草识别[J].江苏农业科学,2022,50(6):93.
Li Yu,et al.Weed recognition in corn field based on fully convolutional neural network (FCN) method[J].Jiangsu Agricultural Sciences,2022,50(5):93.
[10]孙东来,王继超,陈科,等.基于Ghost-YOLOv3-2算法的2尺度猪目标检测[J].江苏农业科学,2022,50(7):189.
Sun Donglai,et al.Two-scale pig target detection based on Ghost-YOLOv3-2[J].Jiangsu Agricultural Sciences,2022,50(5):189.