|本期目录/Table of Contents|

[1]王瑞聪,张源,杨颜颜,等.NaN3处理马齿苋种子的最适剂量与叶绿素荧光辅助筛选的方法[J].江苏农业科学,2015,43(09):224-228.
 Wang Ruicong,et al.Suitable dose determination of NaN3 processing on purslane seeds and its chlorophyll fluorescence auxiliary filtering method[J].Jiangsu Agricultural Sciences,2015,43(09):224-228.
点击复制

NaN3处理马齿苋种子的最适剂量
与叶绿素荧光辅助筛选的方法
(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第43卷
期数:
2015年09期
页码:
224-228
栏目:
园艺与林学
出版日期:
2015-09-25

文章信息/Info

Title:
Suitable dose determination of NaN3 processing on purslane seeds and its chlorophyll fluorescence auxiliary filtering method
作者:
王瑞聪 张源 杨颜颜 孙林华 陆长梅
南京师范大学生命科学学院,江苏南京 210023
Author(s):
Wang Ruiconget al
关键词:
马齿苋NaN3种子萌发生长叶绿素荧光
Keywords:
-
分类号:
S335;Q945.34
DOI:
-
文献标志码:
A
摘要:
以不同剂量NaN3处理马齿苋种子,从种子萌发、植株生长、光合性能的角度确定最适NaN3处理剂量,并分析以叶绿素荧光动力学方法辅助筛选的可行性。结果表明,1.0 mmol/L NaN3处理8 h或0.5 mmol/L NaN3处理12 h均可显著提高种子萌发率和萌发质量,而更高浓度、更长时间的处理则使萌发率和萌发质量逐渐下降;根据长势初筛后的各处理组种子萌发苗,其株高均高于对照或与对照相当,单叶面积(2.0 mmol/L NaN3 8 h处理组除外)则低于对照;各处理组叶片PSⅡ的潜在和实际光化学效率普遍高于对照(其中2.0 mmol/L NaN3 8 h处理组最高),但除2.0 mmol/L NaN3 8 h处理组外,各组对高光强的抵御能力,特别是快速保护能力均有所下降。2.0 mmol/L NaN3 8 h处理组中马齿苋种子获得植株的株型最高、单叶面积最大、潜在和实际光化学活性最强、抵御强光胁迫能力最强。可见,以2.0 mmol/L NaN3处理8 h是马齿苋种子的最适处理条件,而采用叶绿素荧光动力学分析技术可实现对当代植株光合能力、高光强抗性的无损伤分析,极有利于提高筛选效率。
Abstract:
-

参考文献/References:

[1]Simopoulos A P,Tan D X,Manchester L C,et al. Purslane:a plant source of omega-3 fatty acids and melatonin[J]. Journal of Pineal Research,2005,39(3):331-332.
[2]Feng P C,Haynes L J,Magnus K E. High concentration of (—)-noradrenaline in Portulaca oleracea L.[J]. Nature,1961,191:1108.
[3]Sauer L A,Dauchy R T,Blask D E. Polyunsaturated fatty acids,melatonin,and cancer prevention[J]. Biochemical Pharmacology,2001,61(12):1455-1462.
[4]Tiwari K K,Dwivedi S,Mishra S,et al. Phytoremediation efficiency of Portulaca tuberosa rox and Portulaca oleracea L. naturally growing in an industrial effluent irrigated area in Vadodra,Gujrat,India[J]. Environmental Monitoring and Assessment,2008,147(1/2/3):15-22.
[5]安学丽,蔡一林,王久光,等. 化学诱变及其在农作物育种上应用[J]. 核农学报,2003,17(3):239-242.
[6]杜连恩,魏玉昌,可福存,等. 大豆化学诱变育种及其规律的研究[J]. 华北农学报,1989,4(2):39-43.
[7]董颖苹,连 勇,何庆才,等. 植物化学诱变技术在育种中的运用及进展 Ⅱ.突变体的筛选及分子检测[J]. 种子,2005,24(8):54-58.
[8]陈庭,王爱敏,刘运权,等. NaN3对宝巾的诱变效应初步研究[J]. 中国农学通报,2012,28(25):191-195.
[9]Codrea M C,Hakala Y M,Krlund M A,et al. Mahalanobis distance screening of Arabidopsis mutants with chlorophyll fluorescence[J]. Photosynthesis Research,2010,105(3):273-283.
[10]Ptushenko V V,Ptushenko E A,Samoilova O P,et al. Chlorophyll fluorescence in the leaves of Tradescantia species of different ecological groups:induction events at different intensities of actinic light[J]. Bio Systems,2013,114(2):85-97.
[11]陈灿,徐庆国,彭波,等. 不同化学诱变剂对水稻种子萌发和生长的影响[J]. 种子,2008,27(3):9-13.
[12]杨子仪. 野生型与栽培型马齿苋萌发特性与抗逆能力比较[D]. 南京:南京师范大学,2014.
[13]杨子仪,徐亚莉,葛峰,等. 兽药洛克沙胂处理对空心菜生长代谢和营养价值的影响[J]. 地球与环境,2013,41(4):441-450.
[14]van Kooten O,Snel J F H. The use of chlorophyll fluorescence nomenclature in plant stress physiology[J]. Photosynthesis Research,1990,25(3):147-150.
[15]Walters R G,Horton P. Resolution of components of non-photochemical chlorophyll fluorescence quenching in barley leaves[J]. Photosynthesis Research,1991,27(2):121-133.
[16]Schreiber U,Bilger W,Hormann H,et al. Chlorophyll fluorescence as a diagnostic tool:basics and some aspects of practical relevance[M]. Cambridge:Cambridge University Press,1998:320-336.
[17]Hodges M,Comic G,Briantais J M. Chlorophyll fluorescence from spinach leaves:resolution of non-photochemical quenching[J]. Biochimica et Biophysica Acta(BBA)-Bioenergetics,1989,974(3):289-293.
[18]Müller P,Li X P,Niyogi K K. Non-photochemical quenching:a response to excess light energy[J]. Plant Physiology,2001,125(4):1558-1566.
[19]Demmig A B,Adams Iii W W. The role of xanthophyll cycle carotenoids in the protection of photosynthesis[J]. Trends in Plant Science,1996,1(1):21-26.
[20]Fork D C,Bose S,Herbert S K. Radiationless transitions as a protection mechanism against photoinhibition in higher plants and a red alga[J]. Photosynthesis Research,1986,10(3):327-335.
[21]Rohácˇek K,Soukupová J,Barták M. Chlorophyll fluorescence:a wonderful tool to study plant physiology and plant stress[M]//Schoefs B.Plant cell compartments-selected topics. Kerala,India:Research Signpost,2008:41-104.

相似文献/References:

[1]张宏志,马艳弘,李亚辉,等.乳酸菌发酵菊芋马齿苋复合饮料及其抑菌活性[J].江苏农业科学,2015,43(11):362.
 Zhang Hongzhi,et al.Development and bacteriostatic activity of lactobacillus fermented compound beverage of Jerusalem artichoke and purslane[J].Jiangsu Agricultural Sciences,2015,43(09):362.
[2]刘冲,王茂文,刘兴华,等.氮肥运筹对苏北沿海滩涂马齿苋生长及土壤养分的影响[J].江苏农业科学,2015,43(10):402.
 Liu Chong,et al.Effects of nitrogen management on purslane growth and soil nutrient in coastal mud flat of northern Jiangsu[J].Jiangsu Agricultural Sciences,2015,43(09):402.
[3]董静,邢锦城,王茂文,等.3种外源物质浸种对NaCl胁迫下马齿苋种子萌发的影响[J].江苏农业科学,2017,45(14):103.
 Dong Jing,et al.Effect of seeds soaking with exogenous substances on germination of Portulaca oleracea seeds under NaCl stress[J].Jiangsu Agricultural Sciences,2017,45(09):103.
[4]刘冲,王茂文,邢锦城,等.沿海滩涂增施氮肥对马齿苋生长发育及土壤微生物环境的影响[J].江苏农业科学,2017,45(19):208.
 Liu Chong,et al.Effects of nitrogen fertilizer on growth and soil microbial environment of Portulaca oleracea in coastal mudflat[J].Jiangsu Agricultural Sciences,2017,45(09):208.
[5]董静,魏福友,邢锦城,等.马齿苋幼苗对盐碱胁迫的生理响应[J].江苏农业科学,2019,47(13):153.
 Dong Jing,et al.Physiological responses of Portulaca oleracea seedlings to salt and alkali stresses[J].Jiangsu Agricultural Sciences,2019,47(09):153.
[6]张志,高畅,付玲玲.基于星点设计法优化马齿苋多糖的提取工艺[J].江苏农业科学,2020,48(8):207.
 Zhang Zhi,et al.Optimization of polysaccharide extraction process from Portulaca oleracea L. by response surface-central composite design methodology[J].Jiangsu Agricultural Sciences,2020,48(09):207.
[7]刘 冲,邢锦城,魏福友,等.外源硝态氮对盐胁迫下马齿苋谷氨酸积累及其代谢酶活性的影响[J].江苏农业科学,2020,48(10):130.
 Liu Chong,et al.Effects of exogenous nitrate nitrogen on glutamate accumulation and key enzymes activities in metabolism of Portulaca oleracea L. under salt stress[J].Jiangsu Agricultural Sciences,2020,48(09):130.
[8]董静,邢锦城,洪立洲,等.干燥工艺对马齿苋活性成分及风味物质的影响[J].江苏农业科学,2021,49(16):179.
 Dong Jing,et al.Effects of drying process on active constituents and volatile flavor composition of Portulaca oleracea[J].Jiangsu Agricultural Sciences,2021,49(09):179.
[9]张少平,李洲,练冬梅,等.基于广靶代谢组学分析马齿苋根茎叶中5类重要初生代谢产物[J].江苏农业科学,2021,49(24):139.
 Zhang Shaoping,et al.Analysis of five important primary metabolites in leaf,stem and root of Portulaca oleracea L. based on widely targeted metabolomics[J].Jiangsu Agricultural Sciences,2021,49(09):139.

备注/Memo

备注/Memo:
收稿日期:2014-08-08
基金项目:国家基础科学人才培养基金(编号:J1103507、J1210025);江苏省高校优势学科建设项目;南京师范大学教育教学改革研究课题。
作者简介:王瑞聪(1993—),男,江苏连云港人,主要从事植物资源与植物逆境的研究。E-mail:wangruicong2@gmail.com。
通信作者:陆长梅,博士,副教授,主要从事植物资源与植物逆境的教学与研究。E-mail:luchangmei@njnu.edu.cn。
更新日期/Last Update: 2015-09-25