|本期目录/Table of Contents|

[1]刘学华,宋新山,王苑,等.干旱与大气CO2倍增对土壤微生物量及活性的影响[J].江苏农业科学,2015,43(12):336-338.
 Liu Xuehua,et al.Effects of drought and double CO2 in atmosphere on soil microbial biomass and activities[J].Jiangsu Agricultural Sciences,2015,43(12):336-338.
点击复制

干旱与大气CO2倍增对土壤微生物量及活性的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第43卷
期数:
2015年第12期
页码:
336-338
栏目:
资源与环境
出版日期:
2015-12-25

文章信息/Info

Title:
Effects of drought and double CO2 in atmosphere on soil microbial biomass and activities
作者:
刘学华1 宋新山1 王苑1 李宏伟1 王俊锋1 王刚2
1.东华大学环境科学与工程学院/国家环境保护纺织工业污染防治工程技术中心,上海 201620;2. 中国水利水电科学研究院,北京 100038
Author(s):
Liu Xuehuaet al
关键词:
土壤干旱CO2倍增微生物生物量碳微生物活性
Keywords:
-
分类号:
S154.3
DOI:
-
文献标志码:
A
摘要:
全球气候变化可能会对土壤生态系统产生潜在的影响,通过室内培育试验,设置了3种土壤水分梯度(土壤体积含水率为80%、60%、40%)、2种大气CO2浓度(350、700 μg/L)、2种土壤使用状况(裸土、种植大豆土壤),对土壤微生物量及活性的变化进行研究。结果表明,干旱胁迫使土壤微生物生物量碳量(MBC)含量极显著降低。重度干旱时,植物碳输入会加剧干旱对土壤生态系统的胁迫。大气CO2倍增对土壤MBC量显著不影响。干旱胁迫导致土壤蔗糖酶和过氧化氢酶活性极显著降低。大气CO2倍增能够极显著促进土壤蔗糖酶和过氧化氢酶活性,这可能会加速土壤有机质的降解,加快土壤碳库周转速率,对大气CO2增加起到正反馈作用。干旱与CO2倍增交互作用对土壤MBC和酶活均显著不影响,但在种植大豆的土壤中交互作用对蔗糖酶活性有一定影响。
Abstract:
-

参考文献/References:

[1]王君,宋新山,王苑.多重干湿交替对土壤有机碳矿化的影响[J]. 环境科学与技术,2013(11):31-35.
[2]贾夏,赵永华,韩士杰. 全球大气CO2浓度升高对土壤微生物的影响[J]. 生态学杂志,2007,26(3):443-448.
[3]张乃莉,郭继勋,王晓宇,等. 土壤微生物对气候变暖和大气N沉降的响应[J]. 植物生态学报,2007,31(2):252-261.
[4]辛丽花,韩士杰,郑俊强,等. CO2浓度升高对土壤微生物及土壤酶影响的研究进展[J]. 土壤通报,2006,37(6):1231-1235.
[5]王卫霞,罗达,史作民,等. 岷江干旱河谷造林对土壤微生物群落结构的影响[J]. 生态学报,2014,34(4):890-898.
[6]贾夏,韩士杰,赵永华,等. CO2干扰对红松和长白赤松幼苗土壤微生物量C的影响[J]. 西北林学院学报,2006,21(5):43-46.
[7]丁菡,胡海波,王人潮.半干旱区土壤酶活性与其理化及微生物的关系[J]. 南京林业大学学报:自然科学版,2007,31(2):13-18.
[8]荣兴民,陈玉成,王开运,等. 森林土壤碳氮过程研究现状和展望[J]. 内蒙古林业科技,2004,32(1):30-35.
[9]关松荫. 土壤酶及其研究法[M]. 北京:农业出版社,1986.
[10]林先贵. 土壤微生物研究原理与方法[M]. 北京:高等教育出版社,2010.
[11]耿玉清,王冬梅. 土壤水解酶活性测定方法的研究进展[J]. 中国生态农业学报,2012,20(4):387-394.
[12]Klamer M,Roberts M S,Levine L H,et al. Influence of elevated CO2 on the fungal community in a coastal scrub oak forest soil investigated with terminal-restriction fragment length polymorphism analysis[J]. Applied and Environmental Microbiology,2002,68(9):4370-4376.
[13]Chen X M,Liu J X,Deng Q,et al. Effects of elevated CO2 and nitrogen addition on soil organic carbon fractions in a subtropical forest[J]. Plant and Soil,2012,357(1/2):25-34.
[14]Mitchell E A D,Gilbert D,Buttler A,et al. Structure of microbial communities in sphagnum peatlands and effect of atmospheric carbon dioxide enrichment[J]. Microbial Ecology,2003,46(2):187-199.
[15]Rice C W,Garcia F O,Hampton C O,et al. Soil microbial response in tallgrass prairie to elevated CO2[J]. Plant and Soil,1994,165(1):67-74.
[16]Hinojosa M B,Carreira J A,García-Ruíz R,et al. Soil moisture pre-treatment effects on enzyme activities as indicators of heavy metal-contaminated and reclaimed soils[J]. Soil Biology and Biochemistry,2004,36(10):1559-1568.
[17]赵光影,刘景双,王洋,等. CO2浓度升高对三江平原湿地活性有机碳及土壤微生物的影响[J]. 地理与地理信息科学,2011,27(2):96-100.
[18]Ross D J,Tate K R,Newton P . Elevated CO2 and temperature effects on soil carbon and nitrogen cycling in ryegrass/white clover turves of an Endoaquept soil[J]. Plant and Soil,1995,176(1):37-49.
[19]Kuzyakov Y,Friedel J K,Stahr K. Review of mechanisms and quantification of priming effects[J]. Soil Biology and Biochemistry,2000,32(11/12):1485-1498.
[20]Kammann C,Grünhage L,Grüters U,et al. Response of aboveground grassland biomass and soil moisture to moderate long-term CO2 enrichment[J]. Basic and Applied Ecology,2005,6(4):351-365.

相似文献/References:

[1]蒋宝南,刘腾飞,单建明,等.QuEChERS-GC/μECD法测定土壤中的毒死蜱残留量[J].江苏农业科学,2014,42(12):332.
 Jiang Baonan,et al.Determination of chlorpyrifos residues in soil by QuEChERS-GC/μECD[J].Jiangsu Agricultural Sciences,2014,42(12):332.
[2]李国锋,魏瑞成,王冉.高效液相色谱法测定土壤中联苯与间羟基苯甲酸残留[J].江苏农业科学,2014,42(12):316.
 Li Guofeng,et al.Determination of biphenyl and M-hydroxy benzoic acid residues in soil by high performance liquid chromatography[J].Jiangsu Agricultural Sciences,2014,42(12):316.
[3]史景允,于伟红,梁秋生.蓖麻对镉污染土壤的修复潜力[J].江苏农业科学,2014,42(11):386.
 Shi Jingyun,et al(8).Potential repairing of cadmium contaminated soil by castor oil plant[J].Jiangsu Agricultural Sciences,2014,42(12):386.
[4]李洁.干旱胁迫对青稞幼苗可溶性蛋白的影响[J].江苏农业科学,2015,43(12):124.
 Li Jie,et al.Effect of drought stress on soluble protein contents of highland barley seedings[J].Jiangsu Agricultural Sciences,2015,43(12):124.
[5]何继山,梁杏,李静.土样浸提液电导率与盐分关系的逐步回归分析[J].江苏农业科学,2014,42(10):314.
 He Jishan,et al.Regression analysis of relationship between soil samples leaching solution conductivity and solinity[J].Jiangsu Agricultural Sciences,2014,42(12):314.
[6]徐洪文,卢妍.土壤碳矿化及活性有机碳影响因子研究进展[J].江苏农业科学,2014,42(10):4.
 Xu Hongwen,et al.Research progress on soil carbon mineralization and factors affecting active organic carbon[J].Jiangsu Agricultural Sciences,2014,42(12):4.
[7]李范,李娜,陈建中,等.基于磷脂脂肪酸提取方法的微生物群落结构研究[J].江苏农业科学,2014,42(09):323.
 Li Fan,et al.Study on microbial community structure based on phospholipid fatty acid extraction method[J].Jiangsu Agricultural Sciences,2014,42(12):323.
[8]张乐森,刘悦上,马金芝,等.山东省滨州市设施蔬菜土壤退化防治与修复对策[J].江苏农业科学,2013,41(07):141.
 Zhang Lesen,et al.Control and restoration strategies of facility vegetable soil degradation in Binzhou of Shandong Province[J].Jiangsu Agricultural Sciences,2013,41(12):141.
[9]尹辉,李晖,蒋忠诚,等.典型岩溶区土壤水分的空间异质性研究[J].江苏农业科学,2013,41(07):332.
 Yin Hui,et al.Study on spatial variability of soil water content in typical karst area[J].Jiangsu Agricultural Sciences,2013,41(12):332.
[10]覃怀德,吴炳孙,吴敏,等.橡胶园土壤钾素空间变异与分区管理技术——以海南省琼中县为例[J].江苏农业科学,2013,41(08):326.
 Qin Huaide,et al.Spatial variability and regionalized management of soil potassium nutrient in rubber plantation—Taking Qiongzhong County of Hainan Province as an example[J].Jiangsu Agricultural Sciences,2013,41(12):326.

备注/Memo

备注/Memo:
收稿日期:2014-11-30
基金项目:国家“973”计划(编号:2010CB951102)。
作者简介:刘学华(1989—),男,河南信阳人,硕士研究生,从事土壤环境方面研究。E-mail:liuxuehua678@163.com。
通信作者:宋新山,教授,主要从事人工湿地水处理理论与技术、环境数学模拟技术、气候变化下土壤环境的研究。E-mail:newmountian@dhu.edu.cn。
更新日期/Last Update: 2015-12-25