|本期目录/Table of Contents|

[1]丛汉卿,齐尧尧,朱文丽,等.木薯PHOR1基因的序列分析及其乙烯和茉莉酸甲酯诱导表达特性[J].江苏农业科学,2016,44(11):29-33.
 Cong Hanqing,et al.Sequence analysis of PHOR1 gene and its expression characteristics induced by ethylene and methyl jasmonate in Manihot esculenta Crantz[J].Jiangsu Agricultural Sciences,2016,44(11):29-33.
点击复制

木薯PHOR1基因的序列分析及其乙烯
和茉莉酸甲酯诱导表达特性
(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第44卷
期数:
2016年11期
页码:
29-33
栏目:
生物技术
出版日期:
2016-11-25

文章信息/Info

Title:
Sequence analysis of PHOR1 gene and its expression characteristics induced by ethylene and methyl jasmonate in Manihot esculenta Crantz
作者:
丛汉卿齐尧尧朱文丽陈松笔李丽
中国热带农业科学院热带作物品种资源研究所/农业部热带作物种质资源利用重点开放实验室,海南儋州 571737
Author(s):
Cong Hanqinget al
关键词:
木薯PHOR1基因乙烯茉莉酸表达分析
Keywords:
-
分类号:
S533.01
DOI:
-
文献标志码:
A
摘要:
为研究木薯中PHOR1基因如何被逆境信号调控,根据杨树2个PHOR1同源基因搜索木薯基因组数据库,得到2个高度同源的木薯PHOR1基因,即MePHOR1_1和MePHOR1_2。序列分析表明,它们都具有E3泛素连接酶家族成员特征:含有U-box和armadillo重复序列。此外其启动子区具有乙烯响应元件和茉莉酸响应元件。以木薯品种华南八号悬浮培养细胞为材料,利用qRT-PCR检测MePHOR1_1和MePHOR1_2基因在乙烯利和茉莉酸甲酯处理后的表达特性。结果显示:在乙烯和茉莉酸甲酯分别处理后的细胞悬浮液中,2个PHOR1基因的表达变化呈现相似趋势,即乙烯处理后,2个基因的表达均出现先下降后缓慢上升的趋势;而对茉莉酸信号则呈现先上升后下降又上升再下降的波动性趋势,故推测2个PHOR1基因可被乙烯和茉莉酸信号调控,并可在后续的根生长和淀粉积累等一系列生理生化过程中发挥作用。
Abstract:
-

参考文献/References:

[1]Amador V,Monte E,Martínez-García J L,et al. Gibberellins signal nuclear import of PHOR1,a photoperiod-responsive protein with homology to Drosophila armadillo[J]. Cell,2001,106(3):343-354.
[2]Olszewski N,Sun T P,Gubler F. Gibberellin signaling:biosynthesis,catabolism,and response pathways[J]. Plant Cell,2002,14:S61-S80.
[3]Monte E,Amador V,Russo E,et al. PHOR1,a U-Box GA signaling component with a role in proteasome degradation? [J]. Journal of Plant Growth Regulation,2003,22:152-162.
[4]Pringa E,Martinez-Noel G,Muller U,et al. Interaction of the RING finger-related U-box motif of a nuclear dot protein with ubiquitin-conjugating enzymes[J]. Journal of Biological Chemistry,2001,276:19617-19623.
[5]Conconi A,Smerdon M J,Howe G A,et al. The octadecanoid signalling pathway in plants mediates a response to ultraviolet radiation[J]. Nature,1991,383(6603):826-829.
[6]Turner J G,Ellis C,Devoto A. The jasmonate signal pathway[J]. Plant Cell,2002,14(Suppl1):S153-S164.
[7]Bleecker B,Kende H. Ethylene:a gaseous signal molecule in plants[J]. Annual Review of Cell and Developmental Biology,2000,16:1-18.
[8]Johnson P R,Ecker J R. The ethylene gas signal transduction pathway:a molecular perspective[J]. Annual Review of Genetics,1998,32:227-254.
[9]Zawaski C,Ma C,Strauss S H,et al. PHOTOPERIOD RESPONSE 1 (PHOR1) -like genes regulate shoot/root growth,starch accumulation,and wood formation in Populus[J]. Journal of Experimental Botany,2012,63(15):5623-5634.
[10]Prochnik S,Marri P R,Desany B,et al. The cassava genome:current progress,future directions[J]. Tropical Plant Biology,2012,5:88-94.
[11]Brunak S,Engelbrecht J,Knudsen S. Prediction of human mRNA donor and acceptor sites from the DNA sequence[J]. Journal of Molecular Biology,1991,220:49-65.
[12]Hebsgaard S M,Korning P G,Tolstrup N,et al. Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information[J]. Nucleic Acids Research,2010,24(17):3439-3452.
[13]Hu B,Jin J P,Guo A Y,et al. GSDS 2.0:an upgraded gene feature visualization server[J]. Bioinformatics,2015,31(8):1296-1297.
[14]Solovyev V V,Shahmuradov I A. PromH:Promoters identification using orthologous genomic sequences[J]. Nucleic Acids Research,2003,31(13):3540-3545.
[15]Lescot M,Déhais P,Moreau Y,et al. PlantCARE,a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research,2002,30(1):325-327.
[16]Gasteiger E,Gattiker A,Hoogland C,et al. ExPASy:the proteomics server for in-depth protein knowledge and analysis[J]. Nucleic Acids Research,2003,31(13):3784-3788.
[17]Hunter S,Apweiler R,Attwood T K,et al. InterPro:the integrative protein signature database[J]. Nucleic Acids Research,2009,37(Database issue):D211-D215.
[18]Bailey T L,Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers[J]. Intell Syst Mol Biol,1994,2:28-36.
[19]Bailey T L,Gribskov M. Combining evidence using p-values:application to sequence homology searches[J]. Bioinformatics,1998,14(1):48-54.
[20]Krogh A,Larsson B,Von Heijne G,et al. Predicting transmembrane protein topology with a hidden Markov model:application to complete genomes[J]. Journal of Molecular Biology,2001,305:567-580.
[21]Hua S J,Sun Z R. Support vector machine approach for protein subcellular localization prediction[J]. Bioinformatics,2015,17(8):721-728.
[22]Jones D T. Protein secondary structure prediction based on position-specific scoring matrices[J]. Journal of Molecular Biology,1999,292:195-202.
[23]Arnold K,Bordoli L,Kopp J,et al. The SWISS-MODEL Workspace:a web-based environment for protein structure homology modelling[J]. Bioinformatics,2006,22:195-201.
[24]Khan I K,Wei Q,Chitale M,et al. PFP/ESG:automated protein function prediction servers enhanced with Gene Ontology visualization tool[J]. Bioinformatics,2015,31(2):271-272.
[25]Martinelli F,Uratsu S L,Reagan R L,et al. Gene regulation in parthenocarpic tomato fruit[J]. Journal of Experimental Botany,2009,60:3873-3890.
[26]Jia T,Wei D,Meng S,et al. Identification of regulatory genes implicated in continuous flowering of longan (Dimocarpus longan L.) [J]. PLoS One,2014,9(12):e114568.
[HJ1.76mm] [27]ORourke J A,Yang S S,Miller S S,et al. An RNA-Seq transcriptome analysis of orthophosphate-deficient white lupin reveals novel insights into phosphorus acclimation in plants[J]. Plant Physiology,2013,161:705-724.
[28]Hermans C,Hammond J P,White P J,et al. How do plants respond to nutrient shortage by biomass allocation? [J]. Trends in Plant Science,2006,11:610-617.
[29]Thomas S G,Sun T P. Update on gibberellin signaling:a tale of the tall and the short[J]. Plant Physiology,2004,135:668-676.
[30]Bjorklund S,Antti H,Uddestrand I,et al. Cross-talk between gibberellin and auxin in development of Populus wood:gibberellin stimulates polar auxin transport and has a common transcriptome with auxin[J]. The Plant Journal,2007,52:499-511.
[31]Gou J Q,Strauss S H,Tsai C J,et al. Gibberellins regulate lateral root formation in Populus through interactions with auxin and other hormones[J]. Plant Cell,2010,22:623-39.
[32]Mauriat M,Sandberg L G,Moritz T. Proper gibberellin localization in vascular tissue is required to control auxin-dependent leaf development and bud outgrowth in hybrid aspen[J]. The Plant Journal,2011,67:805-816.
[33]曾文丹,罗兴录. 2个淀粉含量不同木薯品种SSⅡ基因序列及不同生育期淀粉含量比较[J]. 江苏农业科学,2015,43(5):35-38.
[34]安飞飞,简纯平,杨摇龙,等. 木薯幼苗叶绿素含量及光合特性对盐胁迫的响应[J]. 江苏农业学报,2015,31(3):500-504.

相似文献/References:

[1]岑湘涛,沈伟,杨美纯,等.木薯组织培养外植体选择和灭菌研究[J].江苏农业科学,2014,42(11):71.
 Cen Xiangtao,et al(7).Study on explant selection and sterilization in tissue culture of Manihot esculenta[J].Jiangsu Agricultural Sciences,2014,42(11):71.
[2]石兰蓉,卢赛清,黄秋伟,等.木薯花粉活力与柱头可授性研究[J].江苏农业科学,2013,41(08):98.
 Shi Lanrong,et al.Study on pollen viability and stigma receptivity of cassava[J].Jiangsu Agricultural Sciences,2013,41(11):98.
[3]熊军,闫海锋,韦绍丽,等.木薯+花生间作对作物光合特性、农艺性状和产量的影响[J].江苏农业科学,2016,44(06):165.
 Xiong Jun,et al.Effects of cassava and peanut intercropping on photosynthesis characteristics, agronomic traits and yield of crops[J].Jiangsu Agricultural Sciences,2016,44(11):165.
[4]陈俊英,刘永丽,黄会杰,等.木薯粉乙醇清液发酵中糖化条件的研究[J].江苏农业科学,2015,43(07):272.
 Chen Junying,et al.Study on saccharification condition of ethanol fermentation of cassava starch clarifying liquor[J].Jiangsu Agricultural Sciences,2015,43(11):272.
[5]曾文丹,罗兴录.2个淀粉含量不同木薯品种SSⅡ基因序列及不同生育期淀粉含量比较[J].江苏农业科学,2015,43(05):35.
 Zeng Wendan,et al.Comparative study on SSII gene sequence and starch content of two cassava varieties[J].Jiangsu Agricultural Sciences,2015,43(11):35.
[6]黎 萍,黄秋伟,彭靖茹,等.木薯胚性愈伤组织诱导及其离体保存的研究[J].江苏农业科学,2015,43(02):48.
 Li Ping,et al.Induction and in vitro preservation of cassava embryogenic callus[J].Jiangsu Agricultural Sciences,2015,43(11):48.
[7]韦彩会,何永群,曾向阳,等.施肥与耕作技术集成对木薯生长、产量及经济效益的影响[J].江苏农业科学,2016,44(08):148.
 Wei Caihui,et al.Effects of fertilization and tillage technology integration on growth, yield and economic benefits of cassava[J].Jiangsu Agricultural Sciences,2016,44(11):148.
[8]耿彬彬,刘姣,郭育强,等.木薯MeCWINV4启动子的克隆及其活性分析[J].江苏农业科学,2016,44(04):36.
 Geng Binbin,et al.Cloning and active analysis of cassava MeCWINV4 promoter[J].Jiangsu Agricultural Sciences,2016,44(11):36.
[9]韦剑锋,韦冬萍,岑忠用,等.供氮方式对木薯生理与农艺性状的影响[J].江苏农业科学,2016,44(11):127.
 Wei Jianfeng,et al.Effects of nitrogen application types on physiological and agronomic properties of cassava[J].Jiangsu Agricultural Sciences,2016,44(11):127.
[10]齐伟恒,彭琳,郜鲁涛,等.基于GIS的云南省木薯种植适宜性区划[J].江苏农业科学,2017,45(16):195.
 Qi Weiheng,et al.Study on planting suitability division of cassava based on GIS in Yunnan Province[J].Jiangsu Agricultural Sciences,2017,45(11):195.

备注/Memo

备注/Memo:
收稿日期:2015-11-02
基金项目:中央级公益性科研院所基本科研业务费专项资金(编号:1630032014036)。
作者简介:丛汉卿(1983—),男,山东潍坊人,博士,助理研究员,主要从事分子生物学和生物信息学研究。E-mail:hiigara@yeah.net。
通信作者:李丽,女,湖北天门人,博士,副研究员,主要从事分子生物学研究。E-mail:chenli907@163.com。
更新日期/Last Update: 2016-11-25