|本期目录/Table of Contents|

[1]孙婕妤,刘艳秋,李佰林,等.植物对镉的耐性机制以及对镉污染土壤修复的研究进展[J].江苏农业科学,2018,46(07):12-19.
 Sun Jieshu,et al.Research progress on mechanism of plant tolerance to cadmium and remediation of cadmium contaminated soil[J].Jiangsu Agricultural Sciences,2018,46(07):12-19.
点击复制

植物对镉的耐性机制以及对镉污染
土壤修复的研究进展
(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第46卷
期数:
2018年07期
页码:
12-19
栏目:
专论与综述
出版日期:
2018-04-05

文章信息/Info

Title:
Research progress on mechanism of plant tolerance to cadmium and remediation of cadmium contaminated soil
作者:
孙婕妤1 刘艳秋2 李佰林2 周蕴薇1
1.东北林业大学园林学院,黑龙江哈尔滨 150040; 2.江西环境工程职业学院,江西赣州 341000
Author(s):
Sun Jieshuet al
关键词:
耐性机制植物修复植物应用土壤污染
Keywords:
-
分类号:
X53
DOI:
-
文献标志码:
A
摘要:
镉作为土壤中毒性较高的重金属之一,对我国土壤的污染作用日益严重,并有逐渐恶化的趋势,不仅威胁着植物的正常生长,也会通过食物链的传递对人体健康产生严重危害。为了减少镉污染对生态环境的影响,必须对已经污染的土壤进行治理。研究植物如何从土壤中吸收和转运镉离子,以及对其积累和解毒的机制,对开发植物修复技术及生态环境的恢复具有重要意义。本文综述了近些年来植物对重金属镉的吸收、转运、积累、分布的研究进展,并且按胞外至胞内的空间顺序,分别从植物根系分泌物的解毒、细胞壁的固定、质膜的选择透过性、液泡的区隔以及植物分子调控中的螯合作用和转运蛋白的调控作用等机制,关于植物对镉的耐性和解毒机制进行了论述。此外,还从植物修复的重要性和对修复植物筛选的角度出发,对修复植物的判定标准和基本特征等进行了概括。提出将筛选出的修复植物进行合理化应用,通过实际推广来切实降低土壤中的镉浓度,可能成为下一个新的研究热点。
Abstract:
-

参考文献/References:

[1]Pérez A L,Anderson K A. DGT estimates cadmium accumulation in wheat and potato from phosphate fertilizer applications[J]. Science of the Total Environment,2009,407(18):5096-5103.
[2]Hsu S H,Wang S L,Huang J H,et al. Effects of rice straw ash amendment on Cd solubility and distribution in a contaminated paddy soil under submergence[J]. Paddy and Water Environment,2015,13(1):135-143.
[3]宋波,陈同斌,郑袁明,等. 北京市菜地土壤和蔬菜镉含量及其健康风险分析[J]. 环境科学学报,2006,26(8):1343-1353.
[4]Tanhan P,Kruatrachue M,Pokethitiyook P,et al. Uptake and accumulation of cadmium,lead and zinc by Siam weed[Chromolaena odorata (L.) King & Robinson][J]. Chemosphere,2007,68(2):323-329.
[5]Dalcorso G,Farinati S,Maistri S,et al. How plants cope with cadmium:staking all on metabolism and gene expression[J]. Journal of Integrative Plant Biology,2008,50(10):1268-1280.
[6]Yilmaz D D. Effects of salinity on growth and Nickel accumulation capacity of Lemna gibba (Lemnaceae)[J]. Journal of Hazardous Materials,2007,147(1/2):74-77.
[7]Verbruggen N,Hermans C,Schat H,et al. Mechanisms to cope with arsenic or cadmium excess in plants[J]. Current Opinion in Plant Biology,2009,12(3):364-372.
[8]Curie C,Cassin G,Couch D,et al. Metal movement within the plant:contribution of nicotianamine and yellow stripe 1-like transporters[J]. Annals of Botany,2009,103(1):1-11.
[9]Mendoza-Cózatl D G,Jobe T O,Hauser F,et al. Long-distance transport,vacuolar sequestration,tolerance,and transcriptional responses induced by cadmium and arsenic[J]. Current Opinion in Plant Biology,2011,14(5):554-562.
[10]张永志,赵首萍,徐明飞,等. 不同蒸腾作用对番茄幼苗吸收Pb、Cd的影响[J]. 生态环境学报,2009,18(2):515-518.
[11]Liu X,Peng K,Wang A,et al. Cadmium accumulation and distribution in populations of Phytolacca americana L.and the role of transpiration[J]. Chemosphere,2010,78(9):1136-1141.
[12]陈亚慧,刘晓宇,王明新,等. 蓖麻对镉的耐性、积累及与镉亚细胞分布的关系[J]. 环境科学学报,2014,34(9):2440-2446.
[13]Wójcik M,Vangronsveld J,DHaen J,et al. Cadmium tolerance in Thlaspi caerulescens:Ⅱ. Localization of cadmium in Thlaspi caerulescens[J]. Environmental and Experimental Botany,2005,53(2):163-171.
[14]Isaure M P,Huguet S,Meyer C,et al. Evidence of various mechanisms of Cd sequestration in the hyperaccumulator Arabidopsis halleri,the non-accumulator Arabidopsis lyrata,and their progenies by combined synchrotron-based techniques[J]. Journal of Experimental Botany,2015,66(11):3201-3214.
[15]Rascio N,Navari-Izzo F. Heavy metal hyperaccumulating plants:how and why do they do it? And what makes them so interesting?[J]. Plant Science:an International Journal of Experimental Plant Biology,2011,180(2):169-181.
[16]董萌,赵运林,库文珍,等. 蒌蒿对镉的富集特征及亚细胞分布特点[J]. 植物学报,2013,48(4):381-388.
[17]吴朝波,王蕾,郭建春,等. 镉在海雀稗体内的分布及化学形态特征[J]. 环境化学,2016,35(2):330-336.
[18]Tao Q,Hou D D,Yang X E,et al. Oxalate secretion from the root apex of Sedum alfredii contributes to hyperaccumulation of Cd[J]. Plant and Soil,2016,398(1/2):139-152.
[19]Pinto A P,Simoes I,Mota A M. Cadmium impact on root exudates of sorghum and maize plants:a speciation study[J]. Journal of Plant Nutrition,2008,31(10):1746-1755.
[20]Zhang Z C,Chen B X,Qiu B S. Phytochelatin synthesis plays a similar role in shoots of the cadmium hyperaccumulator Sedum alfredii as in non-resistant plants[J]. Plant Cell Environment,2010,33(8):1248-1255.
[21]Zhu Q H,Huang D Y,Liu S L,et al. Accumulation and subcellular distribution of cadmium in ramie (Boehmeria nivea L. Gaud.) planted on elevated soil cadmium contents[J]. Plant Soil and Environment,2013,59(2):57-61.
[22]Douchiche O,Driouich A,Morvan C. Spatial regulation of cell-wall structure in response to heavy metal stress:cadmium-induced alteration of the methyl-esterification pattern of homogalacturonans[J]. Annals of Botany,2010,105(3):481-491.
[23]Xiong J,An L Y,Lu H,et al. Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall[J]. Planta,2009,230(4):755-765.
[24]许桂莲,王焕校,吴玉树,等. Zn、Cd及其复合对小麦幼苗吸收Ca、Fe、Mn的影响[J]. 应用生态学报,2001,12(2):275-278.
[25]Milner M J,Mitani-Ueno N,Yamaji N A,et al. Root and shoot transcriptome analysis of two ecotypes of Noccaea caerulescens uncovers the role of NcNramp1 in Cd hyperaccumulation[J]. Plant Journal,2014,78(3):398-410.
[26]Uraguchi S,Kamiya T,Sakamoto T,et al. Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains[J]. Proceedings of the National Academy of Sciences of the United States of America,2011,108(52):20959-20964.
[27]Ueno D,Milner M J,Yamaji N,et al. Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd-hyperaccumulating ecotype of Thlaspi caerulescens[J]. Plant Journal,2011,66(5):852-862.
[28]Semane B,Cuypers A,Smeets K,et al. Cadmium responses in Arabidopsis thaliana:glutathione metabolism and antioxidative defence system[J]. Physiologia Plantarum,2007,129(3):519-528.
[29]Tian S K,Lu L L,Zhang J,et al. Calcium protects roots of Sedum alfredii H. against cadmium-induced oxidative stress[J]. Chemosphere,2011,84(1):63-69.
[30]Citterio S,Santagostino A,Fumagalli P,et al. Heavy metal tolerance and accumulation of Cd,Cr and Ni by Cannabis sativa L.[J]. Plant and Soil,2003,256(2):243-252.
[31]Guo W J,Meetam M,Goldsbrough P B. Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance[J]. Plant Physiology,2008,146(4):1697-1706.
[32]Morel M,Crouzet J,Gravot A,et al. AtHMA3,a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis[J]. Plant Physiology,2008,149(2):894-904.
[33]Takahashi R,Ishimaru Y,Shimo H,et al. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice[J]. Plant Cell and Environment,2012,35(11):1948-1957.
[34]Bovet L,Eggmann T,Meylan‐Bettex M,et al. Transcript levels of AtMRPs after cadmium treatment:induction of AtMRP3[J]. Plant,Cell & Environment,2003,26(3):371-381.
[35]Song W Y,Yamaki T,Yamaji N,et al. A rice ABC transporter,OsABCC1,reduces arsenic accumulation in the grain[J]. Proceedings of the National Academy of Sciences of the United States of America,2014,111(44):15699-15704.
[36]Thomine S,Lelièvre F,Debarbieux E,et al. AtNRAMP3,a multispecific vacuolar metal transporter involved in plant responses to iron deficiency[J]. The Plant Journal,2003,34(5):685-695.
[37]Li L G,He Z Y,Pandey G K,et al. Functional cloning and characterization of a plant efflux carrier for multidrug and heavy metal detoxification[J]. Journal of Biological Chemistry,2002,277(7):5360-5368.
[38]Korenkov V,King B,Hirschi K,et al. Root-selective expression of AtCAX4 and AtCAX2 results in reduced lamina cadmium in field-grown Nicotiana tabacum L.[J]. Plant Biotechnology Journal,2009,7(3):219-226.
[39]Cagnac O,Bourbouloux A,Chakrabarty D,et al. AtOPT6 transports glutathione derivatives and is induced by primisulfuron[J]. Plant Physiology,2004,135(3):1378-1387.
[40]Xu J,Chai T Y,Zhang Y X,et al. The cation-efflux transporter BjCET2 mediates zinc and cadmium accumulation in Brassica juncea L. leaves[J]. Plant Cell Reports,2009,28(8):1235-1242.
[41]Lang M L,Hao M Y,Fan Q W,et al. Functional characterization of BjCET3 and BjCET4,two new cation-efflux transporters from Brassica juncea L.[J]. Journal of Experimental Botany,2011,62(13):4467-4480.
[42]Baker A J M,Brooks R R,Pease A J,et al. Studies on copper and cobalt tolerance in three closely related taxa within the genus Silene L.(Caryophyllaceae) from Zare[J]. Plant and Soil,1983,73(3):377-385.
[43]魏树和,周启星,王新,等. 一种新发现的镉超积累植物龙葵(Solanum nigrum L.)[J]. 科学通报,2004,49(24):2568-2573.
[44]聂发辉. 关于超富集植物的新理解[J]. 生态环境,2005,14(1):136-138.
[45]魏树和,周启星,任丽萍. 球果蔊菜对重金属的超富集特征[J]. 自然科学进展,2008,18(4):406-412.
[46]戴子云. 19个品种杨桃(Averrhoa carambola)对Cd的富集能力与修复潜力比较[D]. 广州:中山大学,2010.
[47]白宏锋,李晓明. 超积累植物壶瓶碎米荠的镉富集[J]. 江苏农业学报,2012,28(1):76-79.
[48]Yang X E,Long X X,Ye H B,et al. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance)[J]. Plant and Soil,2004,259(1/2):181-189.
[49]刘威,束文圣,蓝崇钰. 宝山堇菜(Viola baoshanensis)——一种新的镉超富集植物[J]. 科学通报,2003,48(19):2046-2049.
[50]李玉双,孙丽娜,孙铁珩,等. 超富集植物叶用红菾菜(Beta vulgaris var. cicla L.)及其对Cd的富集特征[J]. 农业环境科学学报,2007,26(4):1386-1389.
[51]Fan H L,Zhou W. Screening of amaranth cultivars (Amaranthus mangostanus L.) for cadmium hyperaccumulation[J]. Agricultural Sciences in China,2009,8(3):342-351.
[52]聂发辉. 镉超富集植物商陆及其富集效应[J]. 生态环境,2006,15(2):303-306.
[53]刘周莉,何兴元,陈玮. 忍冬——一种新发现的镉超富集植物[J]. 生态环境学报,2013,22(4):666-670.
[54]肖青青,王宏镔,王海娟,等. 滇白前(Silene viscidula)对铅、锌、镉的共超富集特征[J]. 生态环境学报,2009,18(4):1299-1306.
[55]孙约兵,周启星,王林,等. 三叶鬼针草幼苗对镉污染的耐性及其吸收积累特征研究[J]. 环境科学,2009,30(10):3028-3035.
[56]汤叶涛,关丽捷,仇荣亮,等. 镉对超富集植物滇苦菜抗氧化系统的影响[J]. 生态学报,2010,20(2):324-332.
[57]汤叶涛,仇荣亮,曾晓雯,等. 一种新的多金属超富集植物——圆锥南芥(Arabis paniculata L.)[J]. 中山大学学报(自然科学版),2005,44(4):135-136.
[58]韩璐,魏嵬,官子楸,等. Zn/Cd超富集植物天蓝遏蓝菜(Thlaspi caerulescens)中TcCaM2基因的克隆及在酵母中的重金属耐受性分析[J]. 中国科学院研究生院学报,2007,24(4):465-472.
[59]郭艳杰,李博文,杨华. 印度芥菜对土壤Cd、Pb的吸收富集效应及修复潜力研究[J]. 水土保持学报,2009,23(4):130-135.
[60]Wei S H,Twardowska I. Main rhizosphere characteristics of the Cd hyperaccumulator Rorippa globosa (Turcz.) Thell[J]. Plant and Soil,2013,372(1/2):669-681.
[61]Kashem M A,Singh B R,Kondo T,et al. Comparison of extractability of Cd,Cu,Pb and Zn with sequential extraction in contaminated and non-contaminated soils[J]. International Journal of Environmental Science & Technology,2007,4(2):169-176.
[62]李凝玉,卢焕萍,李志安,等. 籽粒苋对土壤中镉的耐性和积累特征[J]. 应用与环境生物学报,2010,16(1):28-32.
[63]Wu S S,Shen C,Yang Z Y,et al. Tolerance of Ricinus communis L. to Cd and screening of high Cd accumulation varieties for remediation of Cd contaminated soils[J]. International Journal of Phytoremediation,2016,18(11):1148-1154.
[64]王文静,刘家女. 一种利用三角梅花卉植物修复重金属镉污染土壤的方法:CN104858226A[P]. 2015-08-26.
[65]侯伶龙,黄荣,周丽蓉,等. 鱼腥草对土壤中镉的富集及根系微生物的促进作用[J]. 生态环境学报,2010,19(4):817-821.
[66]吴朝波,郭建春,符少萍,等. 海雀稗对镉胁迫的生理响应及积累特性[J]. 江苏农业学报,2015,31(6):1337-1343.
[67]王友保,燕傲蕾,张旭情,等. 吊兰生长对土壤镉形态分布与含量的影响[J]. 水土保持学报,2010,24(6):163-166,172.
[68]李硕,刘云国,李永丽,等. 水葱修复土壤镉污染潜力的研究[J]. 环境污染与防治,2006,28(2):84-86.
[69]胡鹏杰,周小勇,仇荣亮,等. Zn超富集植物长柔毛委陵菜对Cd的耐性与富集特征[J]. 农业环境科学学报,2007,26(6):2221-2224.
[70]周启星,刘家女. 一种利用紫茉莉花卉植物修复重金属污染土壤的方法:CN101049603[P]. 2007-10-10.
[71]林立金,罗丽,廖明安,等. 挺水植物水田芥对镉的积累特性研究[J]. 长江流域资源与环境,2015,24(4):684-689.
[72]王素娟,李正文,王彦祥. 羽叶鬼针草对Cd、Pb的吸附特性研究[J]. 河南农业科学,2009(6):77-81.
[73]罗丽,林立金,廖明安,等. 旱莲草对镉的富集特性研究[J]. 华北农学报,2014,29(3):216-220.
[74]林立金,马倩倩,石军,等. 花卉植物硫华菊的镉积累特性研究[J]. 水土保持学报,2016,30(3):141-146.
[75]Lin L,Jin Q,Liu Y,et al. Screening of a new cadmium hyperaccumulator,Galinsoga parviflora,from winter farmland weeds using the artificially high soil cadmium concentration method[J]. Environmental Toxicology and Chemistry,2014,33(11):2422-2428.
[76]魏树和,周启星. 一种利用富集植物蒲公英修复重金属污染土壤的方法:CN101406896[P]. 2009-04-15.
[77]曾清如,杨洋,陈璘涵,等. 一种利用油葵种植修复重金属污染土壤的方法:CN103639183A[P]. 2014-03-19.
[78]何池全,马灏,吴美英,等. 一种利用能源作物蓖麻修复重金属污染土壤的方法:CN104785514A[P]. 2015-07-22.

相似文献/References:

[1]史景允,于伟红,梁秋生.蓖麻对镉污染土壤的修复潜力[J].江苏农业科学,2014,42(11):386.
 Shi Jingyun,et al(8).Potential repairing of cadmium contaminated soil by castor oil plant[J].Jiangsu Agricultural Sciences,2014,42(07):386.
[2]房春生,王帆,刘多,等.模拟酸雨对白菜体内铅、镉富集的影响[J].江苏农业科学,2013,41(08):323.
 Fang Chunsheng,et al.Effects of simulated acid rain on lead and cadmium accumulation in Brassica chinensis ssp. chinensis[J].Jiangsu Agricultural Sciences,2013,41(07):323.
[3]雷忻,郭兆权,延志莲,等.镉胁迫对泥鳅血清卵黄蛋白原的诱导作用[J].江苏农业科学,2013,41(09):321.
 Lei Xin,et al.Inductive effect of cadmium stress on serum vitellogenin in Misgurnus anguillicaudatus[J].Jiangsu Agricultural Sciences,2013,41(07):321.
[4]郭继斌,王莉,韩娇,等.联合浸提法测定土壤有效态镉[J].江苏农业科学,2016,44(03):369.
 Guo Jibin,et al.Determination of soil available Cd content by universal extraction method[J].Jiangsu Agricultural Sciences,2016,44(07):369.
[5]高华健,王玉祯,侯丹,等.锌调节镉胁迫水稻幼苗根系生长的生理机制[J].江苏农业科学,2013,41(12):48.
 Gao Huajian,et al.Physiological effect of zinc on growth of rice seedling roots under cadmium stress[J].Jiangsu Agricultural Sciences,2013,41(07):48.
[6]姚茹,黎小正.广西沿海主要贝类养殖区海水、表层沉积物及近江牡蛎体内重金属镉监测与评价[J].江苏农业科学,2014,42(01):316.
 Yao Ru,et al.Monitoring and comprehensive assessment of Cd in sea water,surface sediments and body of Crassostrea rivularis in main shellfish culture areas of Guangxi coastal waters[J].Jiangsu Agricultural Sciences,2014,42(07):316.
[7]刘标,尹红梅,陈薇,等.高效镉吸附菌株的筛选及生物学特性[J].江苏农业科学,2014,42(03):316.
 Liu Biao,et al.Screening and biological characteristics of strains with strong cadmium adsorption ability[J].Jiangsu Agricultural Sciences,2014,42(07):316.
[8]刘思思,高旋旋,胡竹青,等.镉诱导锦鲤肾脏氧化性DNA损伤及谷胱甘肽抗氧化系统改变[J].江苏农业科学,2016,44(02):272.
 Liu Sisi,et al.Cadmium induced renal oxidative DNA damage and glutathione antioxidant system change of brocade carp[J].Jiangsu Agricultural Sciences,2016,44(07):272.
[9]宋晓慧,陆引罡,何丹,等.烟草对镉的吸收及镉在亚细胞中的分布[J].江苏农业科学,2014,42(05):116.
 Song Xiaohui,et al.Absorbtion and subcellular distribution of cadmium in tobacco[J].Jiangsu Agricultural Sciences,2014,42(07):116.
[10]张美德,艾伦强,卢超,等.硒对镉胁迫下白术幼苗生理特性的影响[J].江苏农业科学,2015,43(10):306.
 Zhang Meide,et al.Effect of selenium on physiological characteristics of Atractylodes macrocephala Koidz. seedlings under cadmium stress[J].Jiangsu Agricultural Sciences,2015,43(07):306.

备注/Memo

备注/Memo:
收稿日期:2017-05-31
基金项目:公益性行业(林业)科研专项(编号:201404202)。
作者简介:孙婕妤(1992—),女,黑龙江鸡西人,硕士研究生,研究方向为园林植物种质资源。E-mail:jieyu120@foxmail.com。
通信作者:周蕴薇,博士,教授,研究方向为园林植物种质资源。E-mail:dlzhyw@126.com。
更新日期/Last Update: 2018-04-05