|本期目录/Table of Contents|

[1]陈凌云,余芳洁,陈君杰,等.植物硫代葡萄糖苷二次修饰及调控的研究进展[J].江苏农业科学,2019,47(04):22-29.
 Chen Lingyun,et al.Research progress of secondary modification and regulation of glucosinolate in plants[J].Jiangsu Agricultural Sciences,2019,47(04):22-29.
点击复制

植物硫代葡萄糖苷二次修饰及调控的研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第47卷
期数:
2019年第04期
页码:
22-29
栏目:
专论与综述
出版日期:
2019-03-15

文章信息/Info

Title:
Research progress of secondary modification and regulation of glucosinolate in plants
作者:
陈凌云 余芳洁 陈君杰 朱祝军 王华森 郁有健
浙江农林大学农业与食品科学学院/浙江省农产品品质改良技术研究重点实验室/浙江农林大学生物种业研究中心,浙江临安 311300
Author(s):
Chen Lingyunet al
关键词:
硫代葡萄糖苷二次修饰转录因子调控多样性研究进展
Keywords:
-
分类号:
S184
DOI:
-
文献标志码:
A
摘要:
硫代葡萄糖苷(简称硫苷)是十字花科植物中富含氮、硫的次生代谢产物,在植物防御和人类营养健康方面具有重要作用。源于硫苷可变氨基酸侧链的不同修饰,赋予了硫苷结构的多样性及其代谢产物的特殊活性。归纳和总结了近年来脂肪族、吲哚族和芳香族硫苷的二次修饰、转录因子和几种关键植物激素对硫苷二次修饰的调控作用以及硫苷二次修饰相关基因对硫苷合成反馈调节的研究进展。这对于深入认识硫苷合成和调控的分子机理以及十字花科蔬菜作物的抗性和高品质育种具有重要意义。
Abstract:
-

参考文献/References:

[1]Stotz H U,Sawada Y,Shimada Y,et al. Role of camalexin,indole glucosinolates,and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum[J]. The Plant Journal,2011,67(1):81-93.
[2]Falk K L,Kastner J,Bodenhausen N,et al. The role of glucosinolates and the jasmonic acid pathway in resistance of Arabidopsis thaliana against molluscan herbivores[J]. Molecular Ecology,2014,23(5):1188-1203.
[3]Gu Z X,Guo Q H,Gu Y J. Factors influencing glucoraphanin and sulforaphane formation in Brassica plants:a review[J]. Journal of Integrative Agriculture,2012,11(11):1804-1816.
[4]Agerbirk N,Olsen C E. Glucosinolate structures in evolution[J]. Phytochemistry,2012,77(1):16-45.
[5]张园园. 油菜和拟南芥中几个硫代葡萄糖苷合成及调控基因的功能分析[D]. 武汉:华中农业大学,2015.
[6]Snderby I E,Geu-Flores F,Halkier B A. Biosynthesis of glucosinolates-gene discovery and beyond[J]. Trends in Plant Science,2010,15(5):283-290.
[7]Hopkins R J,van Dam N M,van Loon J J. Role of glucosinolates in insect-plant relationships and multitrophic interactions[J]. Annual Review of Entomology,2009,54(1):57-83.
[8]赵宇,孔稳稳,沙伟,等. 脂肪族芥子油苷侧链修饰酶基因FMOGS-OX4表达模式分析[J]. 植物科学学报,2013,31(4):406-414.
[9]Kliebenstein D J,Kroymann J,Brown P,et al. Genetic control of natural variation in Arabidopsis glucosinolate accumulation[J]. Plant Physiology,2001,126(2):811-825.
[10]Kong W,Jing L,Yu Q,et al. Two novel flavin-containing monooxygenases involved in biosynthesis of aliphatic glucosinolates[J]. Frontiers in Plant Science,2016,7(e2068):1292.
[11]Hansen B G,Kliebenstein D J,Halkier B A. Identification of a flavin-monooxygenase as the S-oxygenating enzyme in aliphatic glucosinolate biosynthesis in Arabidopsis[J]. The Plant Journal,2007,50(5):902-910.
[12]Li J,Hansen B G,Ober J A,et al. Subclade of flavin-monooxygenases involved in aliphatic glucosinolate biosynthesis[J]. Plant Physiology,2008,148(3):1721-1733.
[13]Mostafa I,Zhu N,Yoo M J,et al. New nodes and edges in the glucosinolate molecular network revealed by proteomics and metabolomics of Arabidopsis myb28/29 and cyp79B2/B3 glucosinolate mutants[J]. Journal of Proteomics,2016,138(1):1-19.
[14]Kliebenstein D J,Lambrix V M,Reichelt M,et al. Gene duplication in the diversification of secondary metabolism:tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis[J]. The Plant Cell,2001,13(3):681-693.
[15]Giovannucci E,Rimm E B,Liu Y,et al. A prospective study of cruciferous vegetables and prostate cancer[J]. Cancer Epidemiology Biomarkers & Prevention,2003,12(12):1403-1409.
[16]Qian H,Sun B,Miao H,et al. Variation of glucosinolates and quinone reductase activity among different varieties of Chinese kale and improvement of glucoraphanin by metabolic engineering[J]. Food Chemistry,2015,168(168):321-326.
[17]Hansen B G,Kerwin R E,Ober J A,et al. A novel 2-oxoacid-dependent dioxygenase involved in the formation of the goiterogenic 2-hydroxybut-3-enyl glucosinolate and generalist insect resistance in Arabidopsis[J]. Plant Physiology,2008,148(4):2096-2108.
[18]Dean C. Genetics of aliphatic glucosinolates. Ⅲ. Side chain structure of aliphatic glucosinolates in Arabidopsis thaliana[J]. Heredity,1995,74(2):210-215.
[19]Klempien A,Kaminaga Y,Qualley A,et al. Contribution of CoA ligases to benzenoid biosynthesis in petunia flowers[J]. The Plant Cell,2012,24(5):2015-2030.
[20]Lee S,Kaminaga Y,Cooper B,et al. Benzoylation and sinapoylation of glucosinolate R-groups in Arabidopsis[J]. The Plant Journal,2012,72(3):411-422.
[21]Kliebenstein D J,Dauria J C,Behere A S,et al. Characterization of seed-specific benzoyloxyglucosinolate mutations in Arabidopsis thaliana[J]. The Plant Journal,2007,51(6):1062-1076.
[22]Bednarek P,Pi s′lewska-Bednarek M,Svato A,et al. A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense[J]. Science,2009,323(5910):101-106.
[23]Kim J H,Lee B W,Schroeder F C,et al. Identification of indole glucosinolate breakdown products with antifeedant effects on Myzus persicae (green peach aphid)[J]. The Plant Journal,2008,54(6):1015-1026.
[24]Pfalz M,Mikkelsen M D,Bednarek P,et al. Metabolic engineering in Nicotiana benthamiana reveals key enzyme functions in Arabidopsis indole glucosinolate modification[J]. The Plant Cell,2011,23(2):716-729.
[25]Pfalz M,Vogel H,Kroymann J. The gene controlling the indole glucosinolate modifier1 quantitative trait locus alters indole glucosinolate structures and aphid resistance in Arabidopsis[J]. The Plant Cell,2009,21(3):985-999.
[26]Luo Z,Wang C,Fan Z,et al. Mild osmotic stress promotes 4-methoxy indolyl-3-methyl glucosinolate biosynthesis mediated by the MKK9-MPK3/MPK6 cascade in Arabidopsis[J]. Plant Cell Reports,2017,36(4):543-555.
[27]Wiesner M,Schreiner M,Zrenner R. Functional identification of genes responsible for the biosynthesis of 1-methoxy-indol-3-ylmethyl-glucosinolate in Brassica rapa ssp. chinensis[J]. BMC Plant Biology,2014,14(1):220-222.
[28]Hamberger B,Bak S. Plant P450s as versatile drivers for evolution of species-specific chemical diversity[J]. Philosophical Transactions of the Royal Society B Biological Sciences,2013,368(1612):934-942.
[29]Mostafa I,Yoo M J,Zhu N,et al. Membrane proteomics of Arabidopsis glucosinolate mutants cyp79B2/B3 and myb28/29[J]. Frontiers in Plant Science,2017,8:534.
[30]Textor S,Gershenzon J. Herbivore induction of the glucosinolate-myrosinase defense system:major trends,biochemical bases and ecological significance[J]. Phytochemistry Reviews,2009,8(1):149-170.
[31]Sánchez-Pujante P J,Borja-Martínez M,Pedreo M ,et al. Biosynthesis and bioactivity of glucosinolates and their production in plant in vitro cultures[J]. Planta,2017,246(1):19-32.
[32]Vo Q V,Trenerry C,Rochfort S,et al. Synthesis and anti-inflammatory activity of aromatic glucosinolates[J]. Bioorganic & Medicinal Chemistry,2013,21(19):5945-5954.
[33]Agerbirk N,Olsen C E,Poulsen E,et al. Complex metabolism of aromatic glucosinolates in Pieris rapae caterpillars involving nitrile formation,hydroxylation,demethylation,sulfation,and host plant dependent carboxylic acid formation[J]. Insect Biochemistry & Molecular Biology,2010,40(2):126-137.
[34]Agerbirk N,Warwick S I,Hansen P R,et al. Sinapis phylogeny and evolution of glucosinolates and specific nitrile degrading enzymes[J]. Phytochemistry,2008,69(17):2937-2949.
[35]Pagnotta E,Agerbirk N,Olsen C E,et al. Hydroxyl and methoxyl derivatives of benzylglucosinolate in Lepidium densiflorum with hydrolysis to isothiocyanates and non-Isothiocyanate products:substitution governs product type and mass spectral fragmentation[J]. Journal of Agricultural & Food Chemistry,2017,65:3167-3178.
[36]Liu T,Zhang X,Yang H,et al. Aromatic glucosinolate biosynthesis pathway in Barbarea vulgaris and its response to Plutella xylostella infestation[J]. Frontiers in Plant Science,2016,7(1):83.
[37]Zhang Y,Li B,Huai D,et al. The conserved transcription factors,MYB115 and MYB118,control expression of the newly evolved benzoyloxy glucosinolate pathway in Arabidopsis thaliana[J]. Frontiers in Plant Science,2015,6:343-343.
[38]Li Y M,Sawada Y,Hirai A,et al. Novel insights into the function of Arabidopsis R2R3-MYB transcription factors regulating aliphatic glucosinolate biosynthesis[J]. Plant and Cell Physiology,2013,54(8):1335-1344.
[39]Frerigmann H,Gigolashvili T. MYB34,MYB51 and MYB122 distinctly regulate indolic glucosinolate biosynthesis in Arabidopsis thaliana[J]. Molecular Plant,2014,7(5):814-828.
[40]Gigolashvili T,Berger B,Mock H P,et al. The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana[J]. The Plant Journal,2007,50(5):886-901.
[41]Yi G E,Robin AH,Yang K,et al. Exogenous methyl jasmonate and salicylic acid induce subspecies-specific patterns of glucosinolate accumulation and gene expression in Brassica oleracea L.[J]. Molecules,2016,21(10):1417.
[42]Schweizer F,Fernandez-Calvo P,Zander M,et al. Arabidopsis basic helix-loop-helix transcription factors MYC2,MYC3,and MYC4 regulate glucosinolate biosynthesis,insect performance,and feeding behavior[J]. The Plant Cell,2013,25(8):3117-3132.
[43]Frerigmann H,Berger B,Gigolashvili T. bHLH05 is an interaction partner of MYB51 and a novel regulator of glucosinolate biosynthesis in Arabidopsis[J]. Plant Physiology,2014,166(1):349-369.
[44]Frerigmann H. Glucosinolate regulation in a complex relationship-MYC and MYB-no one can act without each other[J]. Advances in Botanical Research,2016,80:57-97.
[45]Lu C,Guevara-Garcia A,Fedoroff N V. Mitogen-activated protein kinase signaling in postgermination arrest of development by abscisic acid[J]. Proceedings of the National Academy of Sciences of the United States of America,2002,99(24):15812-15817.
[46]Ichimura K,Mizoguchi T,Yoshida R,et al. Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6[J]. Plant Journal for Cell & Molecular Biology,2000,24(5):655-665.
[47]Xu J,Meng J,Meng X,et al. Pathogen-responsive MPK3 and MPK6 reprogram the biosynthesis of indole glucosinolates and their derivatives in Arabidopsis immunity[J]. Plant Cell,2016,28(5):1144-1162.
[48]Pangesti N,Reichelt M,van de Mortel J E,et al. Jasmonic acid and ethylene signaling pathways regulate glucosinolate levels in plants during rhizobacteria-induced systemic resistance against a leaf-chewing herbivore[J]. Journal of Chemical Ecology,2016,42(12):1-14.
[49]Jost R,Altschmied L,Bloem E,et al. Expression profiling of metabolic genes in response to methyl jasmonate reveals regulation of genes of primary and secondary sulfur-related pathways in Arabidopsis thaliana[J]. Photosynthesis Research,2005,86(3):491-508.
[50]周英男. 拟南芥芥子油苷积累对外源水杨酸的响应[D]. 哈尔滨:东北林业大学,2010.
[51]Genoud T,Métraux J P. Crosstalk in plant cell signaling:structure and function of the genetic network[J]. Trends in Plant Science,1999,4(12):503.
[52]郭容芳. 化学调控对十字花科植物中芥子油苷代谢的影响及其机理[D]. 杭州:浙江大学,2013.
[53]Kauss D,Bischof S,Steiner S,et al. FLU,a negative feedback regulator of tetrapyrrole biosynthesis,is physically linked to the final steps of the Mg2+-branch of this pathway[J]. FEBS Letters,2012,586(3):211-216.
[54]Orrell D,Ramsey S A,Marelli M,et al. Feedback control of stochastic noise in the yeast galactose utilization pathway[J]. Physica D(Nonlinear Phenomena),2006,217(1):64-76.
[55]Wentzell A M,Rowe H C,Hansen B G,et al. Linking metabolic QTLs with network and cis-eQTLs controlling biosynthetic pathways[J]. PLoS Genetics,2007,3(9):1687-1701.
[56]Burow M,Halkier B A,Kliebenstein D J. Regulatory networks of glucosinolates shape Arabidopsis thaliana fitness[J]. Current Opinion in Plant Biology,2010,13(3):347-352.
[57]Burow M,Atwell S,Francisco M,et al. The glucosinolate biosynthetic gene AOP2 mediates feed-back regulation of jasmonic acid signaling in Arabidopsis[J]. Molecular Plant,2015,8(8):1201-1212.
[58]Francisco M,Joseph B,Caligagan H,et al. The defense metabolite,allyl glucosinolate,modulates Arabidopsis thaliana biomass dependent upon the endogenous glucosinolate pathway[J]. Frontiers in Plant Science,2016,7:774.

相似文献/References:

[1]邓艳美,王红妹,万从庆.青花菜中硫代葡萄糖苷的提取工艺[J].江苏农业科学,2013,41(06):254.
 Deng Yanmei,et al.Extraction technology of glucosinolates from broccoli[J].Jiangsu Agricultural Sciences,2013,41(04):254.
[2]马越,丁云花,刘光敏,等.青花菜花球及叶片中硫代葡萄糖苷组分及含量分析[J].江苏农业科学,2016,44(07):300.
 Ma Yue,et al.Analysis of glucosinolate composition and contents in flowers and leaves of broccoli (Brassica oleracea L. var. botrytis L.)[J].Jiangsu Agricultural Sciences,2016,44(04):300.
[3]刘蕾,宋佳,王辉.甘蓝硫苷生物合成相关基因FMOGS-OXS的预测与分析[J].江苏农业科学,2017,45(11):22.
 Liu Lei,et al.Prediction and analysis of glucosinolate biosynthesis related genes FMOGS-OXS in cabbage (Brassica oleracea L.)[J].Jiangsu Agricultural Sciences,2017,45(04):22.
[4]王伟杰,禹艳坤,谭小力.十字花科植物次生代谢物硫代葡萄糖苷生物合成运输分解的研究进展[J].江苏农业科学,2023,51(2):1.
 Wang Weijie,et al.Research progress on biosynthesis and transport decomposition of secondary metabolites glucosinolate in cruciferous plants[J].Jiangsu Agricultural Sciences,2023,51(04):1.

备注/Memo

备注/Memo:
收稿日期:2017-10-07
基金项目:国家自然科学基金(编号:31572115);浙江省自然科学基金重点项目(编号:LZ14C150001)。
作者简介:陈凌云(1993—),男,浙江宁波人,硕士研究生,从事硫苷代谢功能基因研究。E-mail:ndjd163@163.com。
通信作者:朱祝军,博士,教授,从事蔬菜品质生理及次生代谢产物研究。E-mail:zhjzhu@zju.edu.cn。
更新日期/Last Update: 2019-02-20