|本期目录/Table of Contents|

[1]邵杰,韦达理,曾昆,等.食品中氨基糖苷类抗生素快速分析方法研究进展[J].江苏农业科学,2019,47(08):18-24.
 Shao Jie,et al.Research progress on rapid analysis methods of aminoglycoside antibiotics in food[J].Jiangsu Agricultural Sciences,2019,47(08):18-24.
点击复制

食品中氨基糖苷类抗生素快速分析方法研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第47卷
期数:
2019年第08期
页码:
18-24
栏目:
专论与综述
出版日期:
2019-05-19

文章信息/Info

Title:
Research progress on rapid analysis methods of aminoglycoside antibiotics in food
作者:
邵杰1 韦达理1 曾昆12 黄哲1 杜道林12
1.江苏大学环境与安全工程学院,江苏镇江 212013; 2.江苏大学环境生态研究所,江苏镇江 212013
Author(s):
Shao Jieet al
关键词:
氨基糖苷类抗生素抗体适配体快速分析方法ELISA
Keywords:
-
分类号:
TS207.3
DOI:
-
文献标志码:
A
摘要:
氨基糖苷类抗生素是一类广谱性抗生素,在临床和动物医疗中应用广泛,从而导致它在动物源性食品中广泛残留。目前,各国针对庆大霉素、卡那霉素、新霉素以及链霉素/双氢链霉素设有最高残留限量。由于检测样本数量庞大,并且检测目标物种类众多,因此对简便、快速的分析方法需求愈加强烈。以特异性抗体为基础的免疫分析方法在氨基糖苷类抗生素的快速分析中占有重要地位,同时核酸适配体被筛选出来并被引入到快速分析领域,丰富和发展了快速分析的类型。主要综述基于能够特异性识别氨基糖苷类抗生素抗体和适配体构建的快速分析方法,包括单一药物分析和多残留分析方法,以期对该领域的发展趋势和方向提供参考。
Abstract:
-

参考文献/References:

[1]丁大连,Salvi R. 氨基糖苷类抗生素耳毒性研究[J]. 中华耳科学杂志,2007,5(2):125-131.
[2]赵敏. 氨基糖苷类抗生素的发展现状和展望[J]. 中国抗生素杂志,1999,24(4):319-320.
[3]Shaikh B,Allen E H. Overview of physical-chemical methods for determining aminoglycoside antibiotics in tissues and fluids of food-producing animals[J]. Journal-Association of Official Analytical Chemists,1984,68(5):1007-1013.
[4]徐飞,氨基糖苷类药物残留监测筛选和验证方法的研究[D]. 北京:中国农业大学,2014.
[5]Binns R B,Tsuji K. High-performance liquid chromatographic analysis of neomycin in petrolatum‐based ointments and in veterinary formulations[J]. Journal of Pharmaceutical Sciences,1984,73(1):69-72.
[6]Tsuji K,Jenkins K M. Derivatization of primary amines by 2-naphthalenesulfonyl chloride for high-performance liquid chromatographic assay of neomycin sulfate[J]. Journal of Chromatography,1986,369(1):105-115.
[7]张晓燕,徐锦忠,沈崇钰,等. 高效液相色谱柱后衍生法测定蜂王浆中的链霉素[J]. 色谱,2008,26(3):395-397.
[8]刘晓茂,赵淑军,张进杰,等. 蜂蜜中链霉素与双氢链霉素残留量的液相色谱串联质谱法测定[J]. 分析测试学报,2008,27(12):1351-1354,1358.
[9]龚强,丁利,朱绍华,等. 高效液相色谱-串联质谱法检测乳制品中10种氨基糖苷类抗生素残留[J]. 色谱,2012,30(11):1143-1147.
[10]Chen D,Yao D S,Xie C F,et al. Development of an aptasensor for electrochemical detection of tetracycline[J]. Food Control,2014,42(42):109-115.
[11]职爱民,李青梅,刘庆堂,等. 抗庆大霉素单克隆抗体的制备及其初步应用[J]. 中国农业科学,2010,43(12):2584-2589.
[12]许耀心,龚云飞,陈宗伦,等. 庆大霉素人工抗原及多克隆抗体的制备与鉴定[J]. 现代食品科技,2014,30(6):152-157.
[13]Jin Y,Jang J W,Han C H,et al. Development of ELISA and immunochromatographic assay for the detection of gentamicin[J]. Journal of Agricultural and Food Chemistry,2005,53(20):7639-7643.
[14]Chen Y Q,Shang Y H,Li X M,et al. Development of an enzyme-linked immunoassay for the detection of gentamicin in swine tissues[J]. Food Chemistry,2008,108(1):304-309.
[15]郭浩,王燕飞,邹明强,等. 悬液芯片与常规酶联免疫吸附法检测庆大霉素残留的比较[J]. 食品科学,2012,33(20):144-148.
[16]王丽哲,王丽丽,赵瑜,等. 牛奶中庆大霉素半定量胶体金试纸条的研制[J]. 中国饲料,2013(20):16-18.
[17]李周敏,许丹科. 可视化蛋白芯片检测牛奶中庆大霉素的方法研究[J]. 分析科学学报,2014,30(5):687-691.
[18]Zeng K,Wei W,Jiang L,et al. Use of carbon nanotubes as a solid support to establish quantitative (centrifugation) and qualitative (filtration) immunoassays to detect gentamicin contamination in commercial milk[J]. J Agric Food Chem,2016,64(41):7874-7881.
[19]Li C,Zhang Y Y,Eremin S A,et al. Detection of kanamycin and gentamicin residues in animal-derived food using IgY antibody based ic-ELISA and FPIA[J]. Food Chemistry,2017,227:48-54.
[20]Wang Y,Killian J,Hamasaki K,et al. RNA molecules that specifically and stoichiometrically bind aminoglycoside antibiotics with high affinities[J]. Biochemistry,1996,35(38):12338-12346.
[21]Rowe A A,Miller E A,Plaxco K W. Reagentless measurement of aminoglycoside antibiotics in blood serum via an electrochemical,ribonucleic acid aptamer-based biosensor[J]. Analytical Chemistry,2010,82(17):7090-7095.
[22]He J X,Wang Y,Zhang X Y. Preparation of artificial antigen and development of IgY-based indirect competitive ELISA for the detection of kanamycin residues[J]. Food Analytical Methods,2016,9(3):744-751.
[23]徐飞,栗静雅,周洁,等. 可视化凝胶酶联免疫吸附分析法检测牛奶中庆大霉素和卡那霉素[J]. 分析化学,2015,43(6):881-885.
[24]Wei Q,Zhao Y F,Du B,et al. Ultrasensitive detection of kanamycin in animal derived foods by label-free electrochemical immunosensor[J]. Food Chemistry,2012,134(3):1601-1606.
[25]Yu S J,Qin W,Du B,et al. Label-free immunosensor for the detection of kanamycin using Ag@Fe3O4,nanoparticles and thionine mixed graphene sheet[J]. Biosensors & Bioelectronics,2013,48(19):224-229.
[26]Wang C S,Liu C,Luo J B,et al. Direct electrochemical detection of kanamycin based on peroxidase-like activity of gold nanoparticles[J]. Analytica Chimica Acta,2016,936:75-82.
[27]贾向阳,尤慧艳,付秀丽. 鱼精蛋白-核酸适配体-金纳米技术快速检测牛奶中的卡那霉素[J]. 色谱,2017,35(3):269-273.
[28]Sharma T K,Ramanathan R,Weerathunge P A,et al. Aptamer-mediated ‘turn-off/turn-on’ nanozyme activity of gold nanoparticles for kanamycin detection[J]. Chemical Communications,2014,50(10):15856-15859.
[29]Xu Y Y,Han T,Li X Q,et al. Colorimetric detection of kanamycin based on analyte-protected silver nanoparticles and aptamer-selective sensing mechanism[J]. Analytica Chimica Acta,2015,891:298-303.
[30]Ramezani M,Danesh N M,Lavaee P A,et al. A selective and sensitive fluorescent aptasensor for detection of kanamycin based on catalytic recycling activity of exonuclease III and gold nanoparticles[J]. Sensors and Actuators B-Chemical,2016,222(1):1-7.
[31]Bai X J,Hou H,Zhang B L,et al. Label-free detection of kanamycin using aptamer-based cantilever array sensor[J]. Biosensors & Bioelectronics,2014,56(18):112-116.
[32]Qin X L,Yin Y,Yu H J,et al. A novel signal amplification strategy of an electrochemical aptasensor for kanamycin,based on thionine functionalized graphene and hierarchical nanoporous PtCu[J]. Biosensors and Bioelectronics,2016,77:752-758.
[33]Sun X,Li F L,Shen G H,et al. Aptasensor based on the synergistic contributions of chitosan-gold nanoparticles,graphene-gold nanoparticles and multi-walled Carbon nanotubes-cobalt phthalocyanine nanocomposites for kanamycin detection[J]. Analyst,2014,139(1):299-308.
[34]刘沙洲,桑小雪,欧阳华学,等. 新霉素ELISA检测方法的建立[J]. 食品科学,2011,32(14):227-231.
[35]张晓剑. 新霉素单克隆抗体的制备及初步应用[D]. 扬州:扬州大学,2010.
[36]徐乃丰. 新霉素ELISA方法的建立[D]. 无锡:江南大学,2010.
[37]徐蓓. 食品中新霉素兽药残留酶联免疫检测方法研究[D]. 天津:天津科技大学,2007.
[38]Chen Y Q,Shang Y H,Wu X P,et al. Enzyme-linked immunosorbent assay for the detection of neomycin in milk:effect of hapten heterology on assay sensitivity[J]. Food and Agricultural Immunology,2007,18(2):117-128.
[39]王爱萍,李发弟,胡骁飞,等. 新霉素免疫膜层析检测方法研究[J]. 中国农业科学,2011,44(11):2387-2397.
[40]Zhu Y,Son J I,Shim Y B. Amplification strategy based on gold nanoparticle-decorated carbon nanotubes for neomycin immunosensors[J]. Biosensors & Bioelectronics,2010,26(3):1002-1008.
[41]Jiang L C,Majumdar A,Hu W D,et al. Saccharide-RNA recognition in a complex formed between neomycin B and an RNA aptamer[J]. Structure,1999,7(7):817-827.
[42]de-los-Santos-Alvarez N,Lobo-Castan M J,Miranda-Ordieres A J,et al. Modified-RNA aptamer-based sensor for competitive impedimetric assay of neomycin B[J]. Journal of the American Chemical Society,2007,129(13):3808-3809.
[43]Ling K,Jiang H Y,Zhang L L,et al. A self-assembling RNA aptamer-based nanoparticle sensor for fluorometric detection of neomycin B in milk[J]. Analytical and Bioanalytical Chemistry,2016,408(13):3593-3600.
[44]de-los-Santos-lvarez N,Lobo-Castaón M J,Miranda-Ordieres A J,et al. SPR sensing of small molecules with modified RNA aptamers:detection of neomycin B[J]. Biosensors & Bioelectronics,2009,24(8):2547-2553.
[45]Hammer P,Kirchhoff H,Hahn G. Detection of streptomycins in raw milk by an antibody-capture immunoassay[J]. Analytica Chimica Acta,1993,275(1/2):313-316.
[46]Schnappinger P,Usleber E,Martlbauer E,et al. Enzyme immunoassay for the detection of streptomycin and dihydrostreptomycin in milk[J]. Food and Agricultural Immunology,1993,5(2):67-73.
[47]Abuknesha R A,Luk C. Enzyme immunoassays for the analysis of streptomycin in milk,serum and water:development and assessment of a polyclonal antiserum and assayprocedures using novel streptomycin derivatives[J]. Analyst,2005,130(5):964-970.
[48]Heering W,Usleber E,Dietrich R,et al. Immunochemical screening for antimicrobial drug residues in commercial honey[J]. The Analyst,1998,123(12):2759-2762.
[49]秦燕,鲍伦军,朱柳明. 鸡肝中链霉素残留的2种免疫分析法[J]. 华南农业大学学报,2003,24(4):88-91.
[50]王谦. 抗链霉素单克隆抗体制备与ELISA方法的建立[D]. 北京:中国农业大学,2003.
[51]杨智洪. 分泌抗链霉素单克隆抗体杂交瘤细胞株的建立及其初步应用[D]. 郑州:河南农业大学,2005.
[52]唐娜. 牛乳中链霉素残留检测ELISA试剂盒的研制[D]. 扬州:扬州大学,2006.
[53]范国英. 链霉素残留免疫学检测技术研究[D]. 杨凌:西北农林科技大学,2007.
[54]张桂贤. 链霉素单克隆抗体的制备及其初步应用研究[D]. 重庆:西南大学,2006.
[55]Wu J X,Zhang S,Zhou X. Monoclonal antibody-based ELISA and colloidal gold-based immunochromatographic assay for streptomycin residue detection in milk and swine urine[J]. Journal of Zhejiang University-Science B(Biomedicine & Biotechnology),2010,11(1):52-60.
[56]奚茜. 食品中链霉素残留快速检测技术研究[D]. 杭州:中国计量学院,2012.
[57]Schnappinger P,Usleber E,Mrtlbauer E,et al. Rapid detection of streptomycin and dihydrostreptomycin in milk by enzyme-linked immunofiltration assay[J]. Food and Agricultural Immunology,1996,8(4):269-272.
[58]Ferguson J P,Baxter G A,Mcevoy J D G,et al. Detection of streptomycin and dihydrostreptomycin residues in milk,honey and meat samples using an optical biosensor[J]. Analyst,2002,127(7):951-956.
[59]Verheijen R,Osswald I K,Dietrich,ea al. Development of a one step strip test for the detection of (dihydro)streptomycin residues in raw milk[J]. Food and Agricultural Immunology,2000,12(1):31-40.
[60]Sun Y Z,Xie J,Peng T,et al. A new method based on time-resolved fluoroimmunoassay for the detection of streptomycin in milk[J]. Food Analytical Methods,2017,10(7):2262-2269.
[61]Mishra G K,Sharma A,Bhand S. Ultrasensitive detection of streptomycin using flow injection analysis-electrochemical quartz crystal nanobalance (FIA-EQCN) biosensor[J]. Biosensors & Bioelectronics,2015,67(3):532-539.
[62]Wutz K,Niessner R,Seidel M. Simultaneous determination of four different antibiotic residues in honey by chemiluminescence multianalyte chip immunoassays[J]. Microchimica Acta,2011,173(1/2):1-9.
[63]Liu B Q,Zhang B,Cui Y L,et al. Multifunctional gold-silica nanostructures for ultrasensitive electrochemical immunoassay of streptomycin residues[J]. ACS Applied Materials & Interfaces,2011,3(12):4668-4676.
[64]Zhou N D,Wang J Y,Zhang J,et al. Selection and identification of streptomycin-specific single-stranded DNA aptamers and the application in the detection of streptomycin in honey[J]. Talanta,2013,108(8):109-116.
[65]Soheili V,Taghdisi S M,Khayyat M H,et al. Colorimetric and ratiometric aggregation assay for streptomycin using gold nanoparticles and a new and highly specific aptamer[J]. Microchimica Acta,2016,183(5):1687-1697.
[66]Emrani A S,Danesh N M,Lavaee P,et al. Colorimetric and fluorescence quenching aptasensors for detection of streptomycin in blood serum and milk based on double-stranded DNA and gold nanoparticles[J]. Food Chemistry,2016,190:115-121.
[67]Zhao J,Wu Y G,Tao H,et al. Colorimetric detection of streptomycin in milk based on peroxidase-mimicking catalytic activity of gold nanoparticles[J]. RSC Advances,2017,7(61):38471-38478.
[68]Luan Q,Miao Y B,Gan N,et al. A POCT colorimetric aptasensor for streptomycin detection using porous silica beads- enzyme linked polymer aptamer probes and exonuclease-assisted target recycling for signal amplification[J]. Sensors and Actuators B-Chemical,2017,251:349-358.
[69]Taghdisi S M,Danesh N M,Nameghi M A,et al. A label-free fluorescent aptasensor for selective and sensitive detection of streptomycin in milk and blood serum[J]. Food Chemistry,2016,203:145-149.
[70]Wu C Y,Gan N,Ou C R,et al. A homogenous ″signal-on″ aptasensor for antibiotics based on a single stranded DNA binding protein-quantum dot aptamer probe coupling exonuclease-assisted target recycling for signal amplification[J]. RSC Advances,2017,7(14):8381-8387.
[71]Danesh N M,Ramezani M,Emrani A S,et al. A novel electrochemical aptasensor based on arch-shape structure of aptamer-complimentary strand conjugate and exonuclease I for sensitive detection of streptomycin[J]. Biosensors & Bioelectronics,2016,75:123-128.
[72]Loomans E E,Van Wiltenburg J,Koets M,et al. Neamin as an immunogen for the development of a generic ELISA detecting gentamicin,kanamycin,and neomycin in milk[J]. Journal of Agricultural and Food Chemistry,2003,51(3):587-593.
[73]王忠斌,王向红,徐蓓,等. 氨基糖苷类药物多残留酶联免疫分析方法的研究[J]. 中国食品学报,2008,8(5):120-125.
[74]杨建军,于军,徐晓立. 抗氨基苷类抗生素单克隆抗体的制备[J]. 中国畜牧兽医文摘,2011,27(5):36-37.
[75]Haasnoot W,Cazemier G,Koets M,et al. Single biosensor immunoassay for the detection of five aminoglycosides in reconstituted skimmed milk[J]. Analytica Chimica Acta,2003,488(1):53-60.
[76]Xue J,Liu J,Wang C S,et al. Simultaneous electrochemical detection of multiple antibiotic residues in milk based on aptamers and quantum dots[J]. Analytical Methods,2016,8(9):1981-1988.

相似文献/References:

[1]张艳,刘海隆,曹宗喜,等.4种猪肺炎支原体疫苗免疫仔猪后抗体水平的变化规律[J].江苏农业科学,2013,41(05):186.
 Zhang Yan,et al.Antibody changes of swine inoculated with four Mycoplasma hyopneumoniae vaccines[J].Jiangsu Agricultural Sciences,2013,41(08):186.
[2]郎刚华,顾立众,李西腾.大米α-球蛋白的原核表达、抗体制备及检测[J].江苏农业科学,2016,44(11):34.
 Lang Ganghua,et al.Prokaryotic expression,antibody preparation and detection of α-globulin in rice[J].Jiangsu Agricultural Sciences,2016,44(08):34.
[3]付世杰,孙勇,王亚楠,等.重金属锌离子人工抗原的合成及抗体特性[J].江苏农业科学,2017,45(02):185.
 Fu Shijie,et al.Synthesis of artificial antigen and characteristics of polyclonal antibody of zinc ion[J].Jiangsu Agricultural Sciences,2017,45(08):185.
[4]周军,朱暖飞,邵启运,等.邻苯二甲酸二丁酯酶联免疫分析方法的建立及镇江地区水体污染调查研究[J].江苏农业科学,2017,45(05):289.
 Zhou Jun,et al.Establishment of enzyme-linked immunoassay for dibutyl phthalate and investigation of water pollution in Zhenjiang area[J].Jiangsu Agricultural Sciences,2017,45(08):289.
[5]何丹,刘媛,李先保,等.微囊藻毒素LR免疫原及包被抗原的合成与鉴定[J].江苏农业科学,2019,47(09):226.
 He Dan,et al.Synthesis and identification of immunogens and coating antigens of microcystin LR[J].Jiangsu Agricultural Sciences,2019,47(08):226.

备注/Memo

备注/Memo:
收稿日期:2017-12-04
基金项目:国家自然科学基金(编号:31502118);江苏省自然科学基金(编号:BK20130507);江苏大学高级人才启动基金(编号:13JDG016)。
作者简介:邵杰(1992—),男,江苏宿迁人,硕士,研究方向为环境污染物快速检测方法。E-mial:shao926336@163.com。
通信作者:杜道林,博士,教授,博士生导师,研究方向为生态学。E-mail:daolindu@163.com。
更新日期/Last Update: 2019-04-20