|本期目录/Table of Contents|

[1]吴茜,张伟欣,张玲玲,等.植物根系表型信息获取技术研究进展[J].江苏农业科学,2021,49(5):31-37.
 Wu Qian,et al.Research progress on acquisition of plant root phenotype information[J].Jiangsu Agricultural Sciences,2021,49(5):31-37.
点击复制

植物根系表型信息获取技术研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第49卷
期数:
2021年第5期
页码:
31-37
栏目:
专论与综述
出版日期:
2021-03-05

文章信息/Info

Title:
Research progress on acquisition of plant root phenotype information
作者:
吴茜1张伟欣1张玲玲1孙传亮1刘乃森2岳延滨3曹静1梁万杰1葛道阔1
1.江苏省农业科学院农业信息研究所,江苏南京 210014;2.淮阴师范学院/江苏省环洪泽湖生态农业生物技术重点实验室,江苏淮安 223300;
3.贵州省农业科学院科技信息研究所,贵州贵阳 550006;4. 江苏大学农业工程学院,江苏镇江 212013
Author(s):
Wu Qianet al
关键词:
根系表型高通量图像采集图像处理根性状作物改良
Keywords:
-
分类号:
S126
DOI:
-
文献标志码:
A
摘要:
人口数量增长和全球气候变化加剧了粮食安全供给压力,育种学家亟需培育高产、高效作物品种以满足日益增长的粮食消费需求。基于根性状的品种培育改良可有效提高作物水分、养分利用率,但根系表型观测的困难性极大地限制了育种进程。随着自动化控制、成像和传感器以及图像解译技术的发展,高通量根表型信息系统性收集已成为可能。本文综述了一系列适用于室内或田间的非破坏性或破坏性根系二维或三维结构测定技术;系统阐述了主流的根表型参数提取图像分析技术和软件;探讨了基于根表型平台的根性状筛选应用于新品种培育的成功案例,并对高通量根表型平台的进一步研发进行了展望。
Abstract:
-

参考文献/References:

[1]朱兆良,金继运.保障我国粮食安全的肥料问题[J]. 植物营养与肥料学报,2013,19(2):259-273.
[2]Lynch J P. Root architecture and plant productivity[J]. Plant Physiology,1995,109(1):7-13.
[3]Fiorani F,Schurr U. Future scenarios for plant phenotyping[J]. Annual Review of Plant Biology,2013,64:267-291.
[4]de Dorlodot S,Forster B,Pagès L,et al. Root system architecture:opportunities and constraints for genetic improvement of crops[J]. Trends in Plant Science,2007,12(10):474-481.
[5]Lynch J P,Brown K M. New roots for agriculture:exploiting the root phenome[J]. Philosophical Transactions of the Royal Society of London. Series B,Biological Sciences,2012,367(1595):1598-1604.
[6]Kuijken R C P,van Eeuwijk F V,Marcelis L F M,et al. Root phenotyping:from component trait in the lab to breeding[J]. Journal of Experimental Botany,2015,66(18):5389-5401.
[7]潘映红. 论植物表型组和植物表型组学的概念与范畴[J]. 作物学报,2015,41(2):175-186.
[8]Adu M O,Chatot A,Wiesel L,et al. A scanner system for high-resolution quantification of variation in root growth dynamics of Brassica rapa genotypes[J]. Journal of Experimental Botany,2014,65(8):2039-2048.
[9]Gioia T,Galinski A,Lenz H,et al. GrowScreen-PaGe,a non-invasive,high-throughput phenotyping system based on germination paper to quantify crop phenotypic diversity and plasticity of root traits under varying nutrient supply[J]. Functional Plant Biology,2016,44(1):76-93.
[10]Nagel K A,Putz A,Gilmer F,et al. GROWSCREEN-Rhizo is a novel phenotyping robot enabling simultaneous measurements of root and shoot growth for plants grown in soil-filled rhizotrons[J]. Functional Plant Biology,2012,39(11):891-904.
[11]Rellán-lvarez R,Lobet G,Lindner H,et al. GLO-Roots:an imaging platform enabling multidimensional characterization of soil-grown root systems[J]. eLife,2015,4:e07597.
[12]Wu J,Wu Q,Pagès L,et al. RhizoChamber-Monitor:a robotic platform and software enabling characterization of root growth[J]. Plant Methods,2018,14(1):44.
[13]卢伟,韩钊,蹇兴亮,等. 基于热红外成像和断根修复算法的玉米根系表型检测方法[J]. 光谱学与光谱分析,2020,40(9):2845-2850.
[14]Bonser A M,Lynch J,Snapp S. Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris[J]. The New Phytologist,1996,132(2):281-288.
[15]Hund A,Trachsel S,Stamp P. Growth of axile and lateral Roots of maize:I development of a phenotying platform[J]. Plant and Soil,2009,325(1):335-349.
[16]Atkinson J A,Wingen L U,Griffiths M,et al. Phenotyping pipeline reveals major seedling root growth QTL in hexaploid wheat[J]. Journal of Experimental Botany,2015,66(8):2283-2292.
[17]Iyer-Pascuzzi A S,Symonova O,Mileyko Y,et al. Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems[J]. Plant Physiology,2010,152(3):1148-1157.
[18]Clark R T,Maccurdy R B,Jung J K,et al. Three-dimensional root phenotyping with a novel imaging and software platform[J]. Plant Physiology,2011,156(2):455-465.
[19]Topp C N,Iyer-Pascuzzi A S,Anderson J T,et al. 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture[J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110(18):E1695-E1704.
[20]朱同林,方素琴,李志垣,等. 基于图像重建的根系三维构型定量分析及其在大豆磷吸收研究中的应用[J]. 科学通报,2006,51(16):1885-1893.
[21]Flavel R J,Guppy C N,Tighe M,et al. Non-destructive quantification of cereal Roots in soil using high-resolution X-ray tomography[J]. Journal of Experimental Botany,2012,63(7):2503-2511.
[22]Mairhofer S,Zappala S,Tracy S R,et al. RooTrak:automated recovery of three-dimensional plant root architecture in soil from x-ray microcomputed tomography images using visual tracking[J]. Plant Physiology,2012,158(2):561-569.
[23]罗锡文,周学成,严小龙,等. 基于XCT技术的植物根系原位形态可视化研究[J]. 农业机械学报,2004,35(2):104-106,133.
[24]张建锋,吴迪,龚向阳,等. 基于核磁共振成像技术的作物根系无损检测[J]. 农业工程学报,2012,28(8):181-185.
[25]Rascher U,Blossfeld S,Fiorani F,et al. Non-invasive approaches for phenotyping of enhanced performance traits in bean[J]. Functional Plant Biology,2011,38(12):968-983.
[26]Moradi A B,Carminati A,Vetterlein D,et al. Three-dimensional visualization and quantification of water content in the rhizosphere[J]. The New Phytologist,2011,192(3):653-663.
[27]Wasson A,Bischof L,Zwart A,et al. A portable fluorescence spectroscopy imaging system for automated root phenotyping in soil cores in the field[J]. Journal of Experimental Botany,2016,67(4):1033-1043.
[28]Trachsel S,Kaeppler S M,Brown K M,et al. Shovelomics:high throughput phenotyping of maize (Zea mays L.) root architecture in the field[J]. Plant and Soil,2011,341(1):75-87.
[29]Bucksch A,Burridge J,York L M,et al. Image-based high-throughput field phenotyping of crop roots[J]. Plant Physiology,2014,166(2):470-486.
[30]Wu J,Pagès L,Wu Q,et al. Three-dimensional architecture of axile roots of field-grown maize[J]. Plant and Soil,2015,387(1):363-377.
[31]陈信信,丁启朔,李毅念,等. 南方稻麦轮作系统下小麦根系的三维分形特征[J]. 中国农业科学,2017,50(3):451-460.
[32]Liedgens M,Richner W. Minirhizotron observations of the spatial distribution of the maize root system[J]. Agronomy Journal,2001,93(5):1097-1104.
[33]史建伟,于水强,于立忠,等. 微根管在细根研究中的应用[J]. 应用生态学报,2006,17(4):715-719.
[34]廖荣伟,刘晶淼,安顺清,等. 基于微根管技术的玉米根系生长监测[J]. 农业工程学报,2010,26(10):156-161.
[35]Amato M,Basso B,Celano G,et al. In situ detection of tree root distribution and biomass by multi-electrode resistivity imaging[J]. Tree Physiology,2008,28(10):1441-1448.
[36]Zenone T,Morelli G,Teobaldelli M,et al. Preliminary use of ground-penetrating radar and electrical resistivity tomography to study tree Roots in pine forests and poplar plantations[J]. Functional Plant Biology,2008,35(10):1047-1058.
[37]郭庆华,刘瑾,陶胜利,等. 激光雷达在森林生态系统监测模拟中的应用现状与展望[J]. 科学通报,2014,59(6):459-478.
[38]舒洪岚. 探地雷达在植物根系研究中的应用[J]. 江西林业科技,2007(5):32-33.
[39]Arsenault J L,Poulcur S,Messier C,et al. WinRHIZO,a root-measuring system with a unique overlap correction method[J]. HortScience,1995,30(4):906-907.
[40]Armengaud P,Zambaux K,Hills A,et al. EZ-Rhizo:integrated software for the fast and accurate measurement of root system architecture[J]. The Plant Journal,2009,57(5):945-956.
[41]Lobet G,Pagès L,Draye X. A novel image-analysis toolbox enabling quantitative analysis of root system architecture[J]. Plant Physiology,2011,157(1):29-39.
[42]Clark R T,Famoso A N,Zhao K Y,et al. High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development[J]. Plant,Cell & Environment,2013,36(2):454-466.
[43]Galkovskyi T,Mileyko Y,Bucksch A,et al. GiA Roots:software for the high throughput analysis of plant root system architecture[J]. BMC Plant Biology,2012,12(1):116.
[44]Schmidt S,Bengough A G,Gregory P J,et al. Estimating root-soil contact from 3D X-ray microtomographs[J]. European Journal of Soil Science,2012,63(6):776-786.
[45]Tracy S R,Nagel K A,Postma J A,et al. Crop improvement from phenotyping roots:highlights reveal expanding opportunities[J]. Trends in Plant Science,2020,25(1):105-118.
[46]Hurd E A. Phenotype and drought tolerance in wheat[J]. Agricultural Meteorology,1974,14(1):39-55.
[47]Wasson A P,Rebetzke G J,Kirkegaard J A,et al. Soil coring at multiple field environments can directly quantify variation in deep root traits to select wheat genotypes for breeding[J]. Journal of Experimental Botany,2014,65(21):6231-6249.
[48]Sebastian J,Yee M C,Viana G W,et al. Grasses suppress shoot-borne roots to conserve water during drought[J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113(31):8861-8866.
[49]Lynch J P. Rightsizing root phenotypes for drought resistance[J]. Journal of Experimental Botany,2018,69(13):3279-3292.
[50]Henry A,Chaves N F,Kleinman P J A,et al. Will nutrient-efficient genotypes mine the soil? Effects of genetic differences in root architecture in common bean (Phaseolus vulgaris L.) on soil phosphorus depletion in a low-input agro-ecosystem in Central America[J]. Field Crops Research,2010,115(1):67-78.
[51]Uga Y,Sugimoto K,Ogawa S,et al. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions[J]. Nature Genetics,2013,45(9):1097-1102.
[52]Atkinson J A,Pound M P,Bennett M J,et al. Uncovering the hidden half of plants using new advances in root phenotyping[J]. Current Opinion in Biotechnology,2019,55:1-8.

相似文献/References:

[1]马玮超,杜茂林,谷亚楠,等.高通量法选育果胶酶高产菌株[J].江苏农业科学,2016,44(07):513.
 Ma Weichao,et al.Screening of pectinase high-producing strains by high-throughput method[J].Jiangsu Agricultural Sciences,2016,44(5):513.
[2]朱暖飞,董帅兵,张祯.环境中氨基脲的高通量酶联免疫法检测[J].江苏农业科学,2018,46(20):313.
 Zhu Nuanfei,et al.Detection of semicarbazide in environment by high-throughput enzyme-linked immunosorbent assay[J].Jiangsu Agricultural Sciences,2018,46(5):313.
[3]李小义,张效平,赵凤,等.鲟鱼肠道微生物多样性的研究[J].江苏农业科学,2018,46(24):164.
 Li Xiaoyi,et al.Study on diversity of gut microbiota of sturgeon[J].Jiangsu Agricultural Sciences,2018,46(5):164.
[4]李夏莹,陈锐,刘鹏程,等.转基因高通量检测技术研究进展[J].江苏农业科学,2019,47(01):27.
 Li Xiaying,et al.Research progress of high throughput testing technologies for genetically modified organisms[J].Jiangsu Agricultural Sciences,2019,47(5):27.
[5]李修华,项志伟,郭新宇,等.基于图像的生菜表型高通量获取方法[J].江苏农业科学,2022,50(20):1.
 Li Xiuhua,et al.High-throughput acquisition of lettuce phenotype based on image[J].Jiangsu Agricultural Sciences,2022,50(5):1.
[6]李远鲲,郭新宇,张颖,等.棉花表型技术研究进展[J].江苏农业科学,2023,51(11):27.
 Li Yuankun,et al.Research progress on cotton phenotypic techniques[J].Jiangsu Agricultural Sciences,2023,51(5):27.

备注/Memo

备注/Memo:
收稿日期:2021-01-08
基金项目:国家重点研发计划(编号:2017YFD0300409、2016YFD0300604);国家自然科学基金(编号:31871522、31601223、31471415);江苏省自然科学基金 (编号:BK20200277);江苏省农业科技自主创新资金[编号:CX(20)3070];江苏省重点研发计划(编号:BE2020409、BE2016268、BE2018393-1)。
作者简介:吴茜(1988—),女,山西太谷人,博士,助理研究员,主要从事植物表型和根系三维结构模型研究。E-mail:wuqian@jaas.ac.cn。
通信作者:曹宏鑫,博士,研究员,主要从事作物品质生理生态、数字农业关键技术等研究,E-mail:caohongxin@hotmail.com;张文宇,博士,副研究员,主要从事农情信息感知、农业系统模拟等智慧农业关键技术研发,E-mail:research@wwery.cn。
更新日期/Last Update: 2021-03-05