|本期目录/Table of Contents|

[1]许凤,杨秀梅,张丽芳,等.观赏植物抗病育种研究进展[J].江苏农业科学,2021,49(7):44-51.
 Xu Feng,et al.Research progress on ornamental plant disease resistance breeding[J].Jiangsu Agricultural Sciences,2021,49(7):44-51.
点击复制

观赏植物抗病育种研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第49卷
期数:
2021年第7期
页码:
44-51
栏目:
专论与综述
出版日期:
2021-04-05

文章信息/Info

Title:
Research progress on ornamental plant disease resistance breeding
作者:
许凤1杨秀梅1张丽芳1王丽花1苏艳1瞿素萍1张艺萍12
1.云南省农业科学院花卉研究所/国家观赏园艺工程技术研究中心/云南省花卉育种重点实验室/云南省花卉工程技术研究中心/昆明市花卉遗传改良重点实验室,云南昆明 650205; 2.云南云科花卉有限公司,云南昆明 650200
Author(s):
Xu Fenget al
关键词:
生物测定抗病性植物病原物观赏植物
Keywords:
-
分类号:
S680.34
DOI:
-
文献标志码:
A
摘要:
在观赏植物的栽培和售后期间经常会发生各种各样的病害,类病毒和病毒、植原体、细菌、卵菌及真菌均可危害观赏植物。与化学防治的短期效应相比,抗病育种是一种可持续的作物保护方法。挖掘和增强观赏植物抗病性可以减少对其他控制策略的需求。因此,提高抗病性通常是观赏植物育种者优先考虑的因素,选育观赏形状好且抗病的品种一直都是观赏植物育种者的目标。本文综述了在观赏植物抗病育种过程中危害观赏植物的病原物生活方式和宿主特异性、观赏植物的抗病机制、抗病性测定方法、抗病育种技术等,展望了观赏植物抗病育种的方向,以期为观赏园艺植物抗病品种的选育提供理论参考。
Abstract:
-

参考文献/References:

[1]Debener T. Current strategies and future prospects of resistance breeding in ornamentals[J]. Acta Horticulture,2009,836:125-130.
[2]Arens P,Bijman P,Tang N,et al. Mapping of disease resistance in ornamentals:a long haul[J]. Acta Horticulture,2012,953:231-237.
[3]Hofte M. Basal and induced disease resistance mechanisms in ornamentals[J]. Acta Horticulture,2015,1087:473-478.
[4]Jung T,Cooke D,Blaschke H,et al. Phytophthora quercina sp. nov.,causing root rot of European oaks[J]. Mycological Research,1999,103(7):785-798.
[5]Grünwald N J,Garbelotto M,Goss E M,et al. Emergence of the sudden oak death pathogen Phytophthora ramorum[J]. Trends in Microbiology,2012,20(3):131-138.
[6]Hardham A R. Phytophthora cinnamomi[J]. Molecular Plant Pathology,2005,6(6):589-604.
[7]Fawke S,Doumane M,Schornack S. Oomycete interactions with plants:infection strategies and resistance principles[J]. Microbiology and Molecular Biology Reviews,2015,79(3):263-280.
[8]Jarvis W R. Botryotinia and Botrytis species:taxonomy,physiology and pathogenicity[M]. 15th ed. Ottawa:Canadian Department of Agriculture,1977.
[9]Hennebert G L. Botrytis and Botrytis-like genera[J]. Persoonia,1973,7:183-204.
[10]Staats M,van Baarlen P,van Kan J A L. Molecular phylogeny of the plant pathogenic genus Botrytis and the evolution of host specificity[J]. Molecular Biology Evolution,2004,22:333-346.
[11]van Kan J A L,Shaw M W,Grant-Downton R T. Botrytis species:relentless necrotrophic thugs or endophytes gone rogue[J]Molecular Plant Pathology,2014,15:957-961.
[12]Armijo G,Schlechter R,Agurto M,et al. Grapevine pathogenic microorganisms:understanding infection strategies and host response scenarios[J]. Frontiers in Plant Science,2016,7:382.
[13]Lentola A,David A,Abdul-Sada A,et al. Ornamental plants on sale to the public are a significant source of pesticide residues with implications for the health of pollinating insects[J]. Environmental Pollution,2017,228:297-304.
[14]Jones J D G,Dangl J L. The plant immune system[J]. Nature,2006,444(7117):323-329.
[15]Owald W,Fleischmann F,Rigling D,et al. Strategies of attack and defence in woody plant-Phytophthora interactions[J]. Forest Pathology,2014,44(3):169-190.
[16]Galletti R,de Lorenzo G,Ferrari S. Host-derived signals activate plant innate immunity[J]. Plant Signaling & Behavior,2009,4(1):33-34.
[17]Bari R,Jones J D. Role of plant hormones in plant defence responses[J]. Plant Molecular Biology,2009,69(4):473-488.
[18]Pilet-Nayel M L,Moury B,Caffier V,et al. Quantitative resistance to plant pathogens in pyramiding strategies for durable crop protection[J]. Frontiers in Plant Science,2017,8:1838.
[19]Pavan S,Jacobsen E,Visser R G,et al. Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance[J]. Molecular Breeding,2010,25(1):1-12.
[20]van Schie C C N,Takken F L W. Susceptibility genes 101:how to be a good host[J]. Annual Review Phytopathology,2014,52:551-581.
[21]Jorgensen I H. Discovery,characterization and exploitation of Mlo powdery mildew resistance in barley[J]. Euphytica,1992,63(1):141-152.
[22]Kaufmann H,Qiu X,Wehmeyer J,et al. Isolation,molecular characterization,and mapping of four rose MLO orthologs[J]. Frontiers in Plant Science,2012,3:244.
[23]Arnold D L,Jackson R W. Bacterial genomes:evolution of pathogenicity[J]. Current Opinion in Plant Biology,2011,14(4):385-391.
[24]Motaung T E,Saitoh H,Tsilo T J. Large-scale molecular genetic analysis in plant-pathogenic fungi:a decade of genome-wide functional analysis[J]. Molecular Plant Pathology,2017,18(5):754-764.
[25]van Laere K,Hermans D,Leus L,et al. Interspecific hybridisation within Buxus spp.[J]. Scientia Horticulturae,2015,185:139-144.
[26]Growns D J. Phenotypic recurrent selection for disease tolerance in Anigozanthos spp. L[J]. Acta Horticulture,2009,1097:101-106.
[27]Kardos J H,Robacker C D,Dirr M A,et al. Production and verification of Hydrangea macrophylla × H. angustipetala hybrids[J]. Hortscience,2009,44:1534-1537.
[28]Shakoor N,Lee S,Mockler T C. High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field[J]. Current Opinion in Plant Biology,2017,38:184-192.
[29]van den Bulk R W. Application of cell and tissue culture and in vitro selection for disease resistance breeding[J]. Euphytica,1991,56:269-285.
[30]Uchneat M S,Zhigilei A,Craig R. Differential response to foliar infection with Botrytis cinerea within the genus Pelargonium[J]. Journal of America Society Horticulture Sciences,1999,124:76-80.
[31]Thakur M,Sharma D,Sharma S. In vitro selection and regeneration of carnation (Dianthus caryophyllus L.) plants resistant to culture filtrate of Fusarium oxysporum f.sp. dianthi[J]. Plant Cell Reports,2002,20(9):825-828.
[32]Zhang Y P,Jiang S,Qu S P,et al. In vitro selection for Fusarium resistant oriental lily mutants using culture filtrate of the fungal agent[J]. Acta Horticulture,2014,1027:205-212.
[33]Xu Y,Crouch J H. Marker-assisted selection in plant breeding:from publication to practice[J]. Crop Sciences,2008,48:391-407.
[34]Ortega F,Lopez-Vizcon C. Application of molecular marker-assisted selection(MAS) for disease resistance in a practical potato breeding programme[J]. Potato Res,2012,55:1-13.
[35]Neale D B,Kremer A. Forest tree genomics:growing resources and applications[J]. Nature Reviews Genetics,2011,12(2):111-122.
[36]Koning-Boucoiran C F,Gitonga V W,Yan Z,et al. The mode of inheritance in tetraploid cut roses[J]. Theoretical and Applied Genetics,2012,125(3):591-607.
[37]Debener T,Byrne D H. Disease resistance breeding in rose:current status and potential of biotechnological tools[J]. Plant Science,2014,228:107-117.
[38]欧阳迪莎.可持续农业中的植物病害管理[D]. 福州:福建农林大学,2005.
[39]Cai J,Liu X,Vanneste K,et al. The genome sequence of the orchid Phalaenopsis equestris[J]. Nature Genetics,2015,47(1):65-72.
[40]Collinge D B,Jrgensen H J,Lund O S,et al. Engineering pathogen resistance in crop plants:current trends and future prospects[J]. Annual Review of Phytopathology,2010,48:269-291.
[41]Sharma R,Messar Y. Transgenics in ornamental crops:creating novelties in economically important cut flowers[J]. Currrent Sciences,2017,113:43-52.
[42]Azadi P,Otang N V,Supaporn H,et al. Increased resistance to cucumber mosaic virus (CMV) in Lilium transformed with a defective CMV replicase gene[J]. Biotechnology Letters,2011,33(6):1249-1255.
[43]Xu G J,Chen S M,Chen F D. Transgenic chrysanthemum plants expressing a harpinXoo gene demonstrate induced resistance to alternaria leaf spot and accelerated development[J]. Russian Journal of Plant Physiology,2010,57(4):548-553.
[44]Xu G,Liu Y,Chen S,et al. Potential structural and biochemical mechanisms of compositae wild species resistance to Alternaria tenuissima[J]. Russian Journal of Plant Physiology,2011,58(3):491-497.
[45]Sen S,Kumar S,Ghani M,et al. Agrobacterium mediated genetic transformation of chrysanthemum (Dendranthema grandiflora Tzvelev) with rice chitinase gene for improved resistance against Septoria obese[J]. Journal of Plant Pathology,2013,12(1):1-10.
[46]Takatsu Y,Nishizawa Y,Hibi T,et al. Transgenic chrysanthemum[Dendranthema grandiflorum (Ramat.) Kitamura]expressing a rice chitinase gene shows enhanced resistance to gray mold (Botrytis cinerea)[J]. Scientia Horticulturae,1999,82(1):113-123.
[47]Sherman J M,Moyer J W,Daub M E. Tomato spotted wilt virus resistance in chrysanthemum expressing the viral nucleocapsid gene[J]. Plant Disease,1998,82(4):407-414.
[48]Kim Y S,Lim S,Yoda H,et al. Simultaneous activation of salicylate production and fungal resistance in transgenic Chrysanthemum producing caffeine[J]. Plant Signaling and Behavior,2011,6(3):409-412.
[49]Marchant R,Davey M R,Lucas J A,et al. Expression of a chitinase transgene in rose (Rosa hybrida L.) reduces development of blackspot disease (Diplocarpon rosae Wolf)[J]. Molecular Breeding,1998,4(3):187-194.
[50]Dohm A,Ludwig C,Schilling D,et al. Transformation of roses with genes for antifungal proteins[J]. Acta Horticulture,2001,547:27-33.
[51]Dohm A,Ludwig C,Schilling D,et al. Transformation of roses with genes for antifungal proteins to reduce their susceptibility to fungal diseases[J]. Acta Horticulture,2002,572:105-111.
[52]Li X,Gasic K,Cammue B,et al. Transgenic rose lines harboring an antimicrobial protein gene,Ace-AMP1,demonstrate enhanced resistance to powdery mildew (Sphaerotheca pannosa)[J]. Planta,2003,218(2):226-232.
[53]Pourhosseini L,Kermani M J,Habashi A A,et al. Efficiency of direct and indirect shoot organogenesis in different genotypes of Rosa hybrid[J]. Plant Cell Tissue Organ Culture,2013,112:101-108.
[54]Korbin M. Assessment of gerbera plants genetically modified with TSWV nucleocapsid gene[J]. J Fruit Ornam Plant Res,2006,14:85-93.
[55]Clarke J L,Spetz C,Haugslien S,et al. Agrobacterium tumefaciens-mediated transformation of poinsettia,Euphorbia pulcherrima,with virus-derived hairpin RNA constructs confers resistance to Poinsettia mosaic virus[J]. Plant Cell Reports,2008,27(6):1027-1038.
[56]Kamo K,Gera A,Cohen J,et al. Transgenic gladiolus plants transformed with the bean yellow mosaic virus coat-protein gene in either sense or antisense orientation[J]. Plant Cell Reports,2005,23(9):654-663.
[57]Kamo K,Jordan R,Guaragna M A,et al. Resistance to cucumber mosaic virus in gladiolus plants transformed with either a defective replicase or coat protein subgroup Ⅱ gene from cucumber mosaic virus[J]. Plant Cell Reports,2010,29(7):695-704.
[58]Kamo K,Aebig J,Guaragna M A,et al. Gladiolus plants transformed with single-chain variable fragment antibodies to cucumber mosaic virus[J]. Plant Cell Tissue and Organ Culture,2012,110(1):13-21.
[59]Kamo K,Lakshman D,Bauchan G,et al. Expression of a synthetic antimicrobial peptide,D4E1,in gladiolus plants for resistance to Fusarium oxysporum f. sp. gladioli[J]. Plant Cell,Tissue and Organ Culture,2015,121(2):459-467.
[60]Kamo K,Lakshman D,Pandey R,et al. Resistance to Fusarium oxysporum f. sp. gladioli in transgenic gladiolus plants expressing either a bacterial chloroperoxidase or fungal chitinase genes[J]. Plant Cell,Tissue and Organ Culture,2016,124(3):541-553.
[61]de Caceres Gonzalez F F N,Davey M R,Sanchez E C,et al. Conferred resistance to Botrytis cinerea in Lilium by overexpression of the RCH[STBX]10[STBZ] chitinase gene[J]. Plant Cell Report,2015,34:1201-1209.
[62]Vieira P,Wantoch S,Lilley C J,et al. Expression of a cystatin transgene can confer resistance to root lesion nematodes in Lilium longiflorum cv. ‘Nellie White’[J]. Transgenic Research,2015,24(3):421-432.
[63]Liao L J,Pan I C,Chan Y L,et al. Transgene silencing in Phalaenopsis expressing the coat protein of cymbidium mosaic virus is a manifestation of RNA-mediated resistance[J]. Molecular Breeding,2004,13(3):229-242.
[64]Chan Y L,Lin K H,Sanjaya,et al. Gene stacking in Phalaenopsis orchid enhances dual tolerance to pathogen attack[J]. Transgenic Research,2005,14(3):279-288.
[65]Xiong J S,Ding J,Li Y. Genome-editing technologies and their potential application in horticultural crop breeding[J]. Horticulture research,2015,2(1):1-10.
[66]Rispail N,Rubiales D. Genome-wide identification and comparison of legume MLO gene family[J]. Scientific reports,2016,6(1):1-12.

相似文献/References:

[1]朱丽梅,崔群香,蔡元琴,等.不同茄子品种田间病害调查及其抗病性鉴定[J].江苏农业科学,2013,41(06):96.
 Zhu Limei,et al.Field investigation of disease and disease resistance identification of different eggplant varieties[J].Jiangsu Agricultural Sciences,2013,41(7):96.
[2]陈士强,陈秀兰,张容,等.小麦赤霉病抗性与株高的相关性研究[J].江苏农业科学,2015,43(12):144.
 Chen Shiqiang,et al.Study on correlation between wheat scab resistance and plant height[J].Jiangsu Agricultural Sciences,2015,43(7):144.
[3]姚悦梅,潘跃平,戴忠良,等.观赏羽衣甘蓝杂交新品种的比较[J].江苏农业科学,2013,41(11):209.
 Yao Yuemei,et al.Comparative study of new hybrid ornamental collard varieties[J].Jiangsu Agricultural Sciences,2013,41(7):209.
[4]冒宇翔,薛林,陈中锦,等.不同品种玉米对粗缩病的田间抗性鉴定[J].江苏农业科学,2013,41(11):134.
 Mao Yuxiang,et al.Identification of resistance to rough dwarf disease of different maize varieties[J].Jiangsu Agricultural Sciences,2013,41(7):134.
[5]陆宁海,吴利民,郎剑锋,等.河南省小麦新品种对茎基腐病的抗性鉴定与评价[J].江苏农业科学,2016,44(04):190.
 Lu Ninghai,et al.Resistance identification to crown rot and evaluation of different new wheat cultivars in Henan Province[J].Jiangsu Agricultural Sciences,2016,44(7):190.
[6]郝蔚,王丽丽,景伟文,等.接种落叶型黄萎病菌棉株的棉酚和单宁含量与抗病性的关系[J].江苏农业科学,2016,44(02):147.
 Hao Wei,et al.Relationship between gossypol and tannin contents and disease-resistance of cotton infected defoliating Verticillium dahliae[J].Jiangsu Agricultural Sciences,2016,44(7):147.
[7]熊仕俊,黄芳,李文贞,等.贵州省主要小麦品种对小麦白粉病的抗性[J].江苏农业科学,2014,42(04):93.
 Xiong Shijun,et al.Disease resistance of main wheat cultivars to powdery mildew in Guizhou Province[J].Jiangsu Agricultural Sciences,2014,42(7):93.
[8]孙永生,金嘉丰.薄皮甜瓜品种的引进、筛选及嫁接效应[J].江苏农业科学,2015,43(07):177.
 Sun Yongsheng,et al.Introduction, selection and grafting of thin skin melon varieties[J].Jiangsu Agricultural Sciences,2015,43(7):177.
[9]苏小俊,张秋萍,钱忠贵,等.叶用萝卜品种苏秀1号的特征特性及高效栽培技术[J].江苏农业科学,2015,43(06):167.
 Su Xiaojun,et al.Characteristics and high efficient cultivation technology of radish cultivar “Suxiu No.1”[J].Jiangsu Agricultural Sciences,2015,43(7):167.
[10]陈新,崔晓艳,袁星星,等.小豆种质资源对大豆花叶病毒病抗性的初步研究[J].江苏农业科学,2015,43(04):156.
 Chen Xin,et al.Preliminary study on resistance of adzuki bean germplasm resources to soybean mosaic virus[J].Jiangsu Agricultural Sciences,2015,43(7):156.

备注/Memo

备注/Memo:
收稿日期:2020-07-16
基金项目:云南省科技人才和平台计划(编号:2017HB083);云南省重点新产品开发专项(编号:2016BB009);云南省国际科技合作项目(编号:2018IA049);部省合建项目(编号:2018BSHJ0108)。
作者简介:许凤(1984—),女,云南昆明人,硕士,助理研究员,主要从事观赏园艺植物资源与育种研究。E-mail:148422486@qq.com。
通信作者:张艺萍,博士,研究员,主要从事观赏园艺植物抗病育种研究,E-mail:blackfarinj@126.com;瞿素萍,硕士,研究员,主要从事观赏园艺植物繁育与育种研究,E-mail:1035496319@qq.com。
更新日期/Last Update: 2021-04-05