|本期目录/Table of Contents|

[1]侯丽媛,董艳辉,李亚莉,等.藜麦抗旱性研究进展与展望[J].江苏农业科学,2021,49(11):22-28.
 Hou Liyuan,et al.Research progress and prospect of drought tolerance of quinoa[J].Jiangsu Agricultural Sciences,2021,49(11):22-28.
点击复制

藜麦抗旱性研究进展与展望(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第49卷
期数:
2021年第11期
页码:
22-28
栏目:
专论与综述
出版日期:
2021-06-05

文章信息/Info

Title:
Research progress and prospect of drought tolerance of quinoa
作者:
侯丽媛董艳辉李亚莉 王育川赵佳刘江秦永军吴慎杰
山西农业大学生命科学学院,山西太原 030031
Author(s):
Hou Liyuanet al
关键词:
藜麦抗旱性研究进展展望非生物胁迫
Keywords:
-
分类号:
S512.901
DOI:
-
文献标志码:
A
摘要:
干旱是造成农作物产量损失最大的非生物胁迫。藜麦作为一种新型的粮食作物,对干旱、盐胁迫、土壤贫瘠和冻害等非生物胁迫均有较好的耐受能力,可以作为土壤与气候逆境条件下的优选作物。筛选、培育耐旱藜麦品种并探明藜麦抗旱相关机制对保障粮食安全、提高藜麦产量与品质,以及提供抗旱基因资源将产生重要的影响。笔者从藜麦在干旱胁迫条件下的抗旱机制、生理生化指标和基因及转录组研究等方面分别进行概述,为藜麦抗旱性鉴定工作提供借鉴,并对今后藜麦抗旱性研究方向进行了展望。
Abstract:
-

参考文献/References:

[1]Jacobsen S E. The worldwide potential for quinoa (Chenopodium quinoa Willd.)[J]. Food Reviews International,2003,19(1/2):167-177.
[2]肖正春,张广伦. 藜麦及其资源开发利用[J]. 中国野生植物资源,2014,33(2):62-66.
[3]Repo-Carrasco R,Espinoza C,Jacobsen S E. Nutritional value and use of the andean crops quinoa (Chenopodium quinoa) and kaiwa (Chenopodium pallidicaule)[J]. Food Reviews International,2003,19(12):179-189.
[4]Bhargava A,Shukla S,Ohri D. Chenopodium quinoa-an Indian perspective[J]. Industrial Crops and Products,2006,23(1):73-87.
[5]Abugoch L E,James L E. Quinoa (Chenopodium quinoa Willd.):composition,chemistry,nutritional,and functional properties[J]. Adv Food Nutr Res,2009,58(9):1-31.
[6]Bazile D,Jacobsen S E,Verniau A. The global expansion of quinoa:trends and limits[J]. Front Plant Sci,2016,9(7):622.
[7]Raney J A,Reynolds D J,Elzininga D B,et al. Transcriptome analysis of drought induced stress in Chenopodium quinoa[J]. Journal of Animaland Plant Sciences,2014,5(3):338-357.
[8]Read J J. Effect of mixed-salt salinity on growth and ion relations of a quinoa and a wheat variety[J]. Journal of Plant Nutrition,2002,25(12):2689-2704.
[9]Jacobsen S E,Mujica A,Jensen C R. The resistance of quinoa to adverse abiotic factors[J]. Food Reviews International,2003,19(1/2):99-109.
[10]Jacobsen S E,Monteros C,Christiansen J L,et al. Plant responses of quinoa (Chenopodium quinoa Willd.) to frost at various phonological stages[J]. European Journal of Agronomy,2005,22(2):131-139.
[11]Sun Y,Jacobsen S E. Quinoa:a multipurpose crop with the ability to withstand extreme conditions in the field[J]. CAB Reviews,2013,8(30):1-10.
[12]张崇玺,贡布扎西. 南美藜(Quinoa)苗期低温冻害试验研究[J]. 西藏农业科技,1994,16(4):49-54.
[13]Levitt J. Responses of plants to environmental stresses:volume Ⅱ. Water,radiation,salt,and other stresses[M]. New York:Academic Press,1980:497-607.
[14]Bodner G,Nakhforoosh A,Kaul H P. Management of crop water under drought:a review[J]. Agronomy for Sustainable Development,2015,35(2),401-442.
[15]刘一明,冯宇,张瑜,等. PEG模拟干旱胁迫下3种臂形草属植物种子萌发期抗旱性评价[J]. 草学,2017(6):21-26,46.
[16]Jensen C R,Jacobsen S E,Andersen M N,et al. Leaf gas exchange and water relation characteristics of field quinoa (Chenopodium quinoa Willd.) during soil drying[J]. European Journal of Agronomy,2000,13(1):11-25.
[17]Shabala L,Mackay A,Tian Y,et al. Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa) [J]. Physiological Plantarum,2012,146(1):26-38.
[18]Kiani-Pouya A,Roesser U,Jayasinghe N S,et al. Epidermal bladder cells confer salinity stress tolerance in the halophyte quinoa and Atriplex species[J]. Plant Cell and Environment,2017,40(9):1900-1915.
[19]Kaur G,Asthir B. Molecular responses to drought stress in plants[J]. Biologia Plantarum,2016,61(2):1-10.
[20]姚庆,秦培友,苗昊翠,等. PEG模拟干旱胁迫下藜麦萌发期抗旱性评价[J]. 新疆农业科学,2019,56(9):1588-1596.
[21]张紫薇,庞春花,张永清,等. 等渗NaCl和PEG胁迫及复水处理对藜麦种子萌发及幼苗生长的影响[J]. 作物杂志,2017(1):119-126.
[22]温日宇,刘建霞,张珍华,等. 干旱胁迫对不同藜麦种子萌发及生理特性的影响[J]. 作物杂志,2019(1):121-126.
[23]宿婧,史晓晶,梁彬,等. 干旱胁迫对藜麦种子萌发及生理特性的影响[J]. 云南农业大学学报(自然科学),2019,34(6):928-932.
[24]岳凯,魏小红,刘文瑜,等. PEG胁迫下不同品系里面抗旱性评价[J]. 干旱地区农业研究,2009,37(3):52-59.
[25]刘文英. 植物逆境与基因[M]. 北京:北京理工大学出版社,2015.
[26]Sanchez H B,Lemeur R,Van Damme P. Ecophysiological analysis of drought and salinity stress in quinoa (Chenopodium quinoa)[J]. Food Reviews International,2003,19(1/2):111-119.
[27]Razzaghi F,Ahmadi S H,Jacobsen S E,et al. Effects of salinity and soil-drying on radiation use efficiency,water productivity and yield of quinoa (Chenopodium quinoa Willd.)[J]. Journal of Agronomy and Crop Science,2012,198(3):173-184.
[28]Canahua A. Observaciones del comportamiento de la quinua a la sequía[C]. Ayacucho:Primer Congreso Internacional sobre cultivos Andinos,1977:390-392.
[29]Vacher J J. Responses of two main Andean crops,quinoa (Chenopodium quinoa Willd.) and papa amarga (Solanum juzepczukii Buk) to drought on the Bolivian Altiplano:significance of local adaptation[J]. Agriculture,Ecosystems and Environmennt,1998,68:99-108.
[30]Jacobsen S E,Liu F L,Jensen C R. Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd.)[J]. Scientia Horticulturae,2009,122(2):281-287.
[31]Gonzalez J A,Gallardo M,Hilai M,et al. Physiological responses of quinoa (Chenopodium quinoa Willd.) to drought and waterlogging stresses:dry matter partitioning[J]. Botanical Studies,2009,50(1):35-42.
[32]Yang A,Akhrar S S,Amjad M,et al. Growth and physiological responses of quinoa to drought and temperature stress[J]. Journal of Agronomy and Crop Science,2016,202(2):445-453.
[33]Sun Y,Liu F,Bendevis M,et al. Sensitivity of two quinoa (Chenopodium quinoa Willd.) varieties to progressive drought stress[J]. Journal of Agronomy and Crop Science,2014,200(1):12-23.
[34]Jacobsen S E. Adaptation of quinoa (Chenopodium quinoa) to Northern European agriculture:studies on developmental pattern[J]. Euphytica,1997,96(1):41-48.
[35]姚有华,白羿雄,吴昆仑. 亏缺灌溉对藜麦光合特性、营养品质和产量的影响[J]. 西北农业学报,2019,28(5):713-722.
[36]刘文瑜,杨发荣,黄杰,等. 干旱胁迫对藜麦幼苗生长和叶绿素荧光特性的影响[J]. 干旱地区农业研究,2019,37(4):171-177.
[37]Chaves M M,Flexas J,Pinheiro C. Photosynthesis under drought and salt stress:regulation mechanisms from whole plant to cell[J]. Annals of Botany,2009,103(4):551-560.
[38]Mahajan S,Tuteja N. Cold,salinity and drought stresses:an overview[J]. Archives of Biochemistry and Biophysics,2005,444(2):139-158.
[39]Aguilar P C,Cutipa Z,Machaca E,et al. Variation of proline content of quinoa (Chenopodium quinoa Willd.) in high beds (Waru Waru)[J]. Food Reviews International,2003,19(1/2):121-127.
[40]Bascuňán-Godoy L,Reguera M,Abdel-Tawab Y M,et al. Water deficit stress-induced changes in carbon and nitrogen partitioning in Chenopodium quinoa Willd[J]. Planta 2016,243(3):591-603.
[41]Fisher S,Wilckens R,Jara J,et al. Variation in antioxidant capacity of quinoa (Chenopodium quinoa Willd.) subjected to drought stress[J]. Industrial Crops & Products,2013,46:341-349.
[42]刘华玲,马欣荣. 植物抗旱分子机理研究进展[J]. 世界科技研究与发展,2006,28(6):33-40.
[43]Shinozaki K. Gene expression and signal transduction in water stress response[J]. Plant Physiology,1997,115(2):327-334.
[44]Jarvis D E,Ho Y S,Lightfoot D J,et al. The genome of Chenopodium quinoa[J]. Nature,2017,542(7641):307-312.
[45]Morales A,Zurita-Silva A,Maldonado J,et al. Transcriptional responses of Chilean quinoa (Chenopodium quinoa Willd.) under water deficit conditions uncovers ABA-independent expression patterns[J]. Frontiers in Plant Science,2017,8:216.
[46]Liu J X,Wang R M,Liu W Y,et al. Genome-wide characterization of heat-shock protein 70s from chenopodium quinoa and expression analyses of cqhsp70s in response to drought stress[J]. Genes,2018,9(2):35.
[47]Fuenres F F,Martinez E A,Hinrichsen P V,et al. Assessment of genetic diversity patterns in Chilean quinoa (Chenopodium quinoa Willd.) germplasm using multiplex fluorescent microsatellite markers[J]. Conservation Genetics,2009,10(2):369-377.
[48]Imamura T,Takagi H,Miyazato A,et al. Isolation and characterization of the betalain biosynthesis gene involved in hypocotyl pigmentation of the allotetraploid Chenopodium quinoa[J]. Biochemical and Biophysical Research Communications,2018,496(2):280-286.
[49]Bosque S H,Lemeur R,Damme P V,et al. Ecophysiological analysis of drought and salinity stress of quinoa (Chenopodium quinoa Willd.)[J]. Food Reviews International,2003,19(1/2):111-119.
[50]Naidoo G,Munsree S G. Relationship between morphological and physiological responses to water logging and salinity in Sporobolus virginicus (L). Kunth[J]. Oecologia,1993,93(3):360-366.
[51]Adolf V I,Jacobsen S E,Shabala S. Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.)[J]. Environmental and Experimental Botany,2013,92:43-54.
[52]Bertero H D,Ruiz R A. Determination of seed number in sea level quinoa (Chenopodium quinoa Willd.) cultivars[J]. European Journal of Agronomy,2008,28(3):186-194.

相似文献/References:

[1]沈浜凯,肖龙云,冯乃杰,等.黄腐酸和AM真菌对玉米幼苗抗旱性的影响[J].江苏农业科学,2013,41(05):64.
 Shen Bangkai,et al.Effects of fulvic acid and AM fungi on drought resistance of maize seedlings[J].Jiangsu Agricultural Sciences,2013,41(11):64.
[2]李会芬,时丽冉,崔兴国,等.水分胁迫对不同品种谷子萌发期的影响[J].江苏农业科学,2013,41(05):67.
 Li Huifen,et al.Effect of water stress on germination stage of different millet cultivars[J].Jiangsu Agricultural Sciences,2013,41(11):67.
[3]徐艳,江建敏,国骏,等.黄瓜褐斑病菌菌丝蛋白对小麦种子萌发、生长及抗旱性的影响[J].江苏农业科学,2014,42(11):159.
 Xu Yan,et al(9).Effects of cucumber brown spot pathogen mycelium protein on seed germination,growth and drought resistance of wheat[J].Jiangsu Agricultural Sciences,2014,42(11):159.
[4]李葵花,高玉亮,吴京姬.转P5CS基因马铃薯“东农303”耐盐、抗旱性研究[J].江苏农业科学,2014,42(11):131.
 Li Kuihua,et al().Study on salt resistance and drought resistance of P5CS transgenic potato cultivar “Dongnong 303”[J].Jiangsu Agricultural Sciences,2014,42(11):131.
[5]张永侠,原海燕,顾春笋,等.红籽鸢尾(Iris foetidissima L.)的抗旱性[J].江苏农业科学,2014,42(08):174.
 Zhang Yongxia,et al.Study on drought resistance of Iris foetidissima L.[J].Jiangsu Agricultural Sciences,2014,42(11):174.
[6]滕忠才,张立红,刘廷辉,等.小菜蛾高毒力球孢白僵菌菌株抗旱性研究[J].江苏农业科学,2013,41(09):119.
 Teng Zhongcai,et al.Study on drought resistance of Beauveria bassiana with high virulence on Plutella xylostella[J].Jiangsu Agricultural Sciences,2013,41(11):119.
[7]谭彦,崔妍,彭重华,等.5种园林地被植物的抗旱性研究[J].江苏农业科学,2016,44(03):203.
 Tan Yan,et al.Study on drought resistance of five ground-cover plants[J].Jiangsu Agricultural Sciences,2016,44(11):203.
[8]李秀英,王丕武.转BADH基因大豆抗旱、耐盐性及主要农艺性状分析[J].江苏农业科学,2013,41(12):75.
 Li Xiuying,et al.Analysis of drought resistance, salt tolerance and main agronomic traits of soybeans transformed with BADH gene[J].Jiangsu Agricultural Sciences,2013,41(11):75.
[9]田福平,路远,张小甫,等.苜蓿新品种(系)的抗旱性综合评价[J].江苏农业科学,2014,42(01):160.
 Tian Fuping,et al.Comprehensive evaluation of drought resistance of new alfalfa varieties[J].Jiangsu Agricultural Sciences,2014,42(11):160.
[10]宋丹华,黄俊华,王丰,等.铃铛刺苗期对持续干旱胁迫的生理响应[J].江苏农业科学,2016,44(05):292.
 Song Danhua,et al.Physiological response of Halimodendron halodendron (Pall.) Voss to drought stress at seedling stage[J].Jiangsu Agricultural Sciences,2016,44(11):292.
[11]王洋,杜会石,鲍庆晗.藜麦种质资源萌发期抗旱性综合评价及抗旱指标筛选[J].江苏农业科学,2023,51(19):62.
 Wang Yang,et al.Comprehensive evaluation of drought resistance of quinoa germplasm resources during germination and screening of drought resistance indexes[J].Jiangsu Agricultural Sciences,2023,51(11):62.

备注/Memo

备注/Memo:
收稿日期:2020-10-20
基金项目:山西省农业科学院特色农业攻关项目(编号:YGG1706);山西省重点研发计划(编号:201903D221085)。
作者简介:侯丽媛(1973—),女,河南商丘人,博士,助理研究员,主要从事植物分子技术育种及相关研究。E-mail:houliyuan0131@163.com。
通信作者:吴慎杰,博士,副研究员,主要从事藜麦种质资源创新研究。E-mail:sj_wu@126.com。
更新日期/Last Update: 2021-06-05