|本期目录/Table of Contents|

[1]王澜,赵步洪,张亚军,等.孕穗期剪叶对稻田甲烷排放的影响[J].江苏农业科学,2021,49(23):71-76.
 Wang Lan,et al.Influences of leaf cutting on methane emissions in paddy fields at booting stage[J].Jiangsu Agricultural Sciences,2021,49(23):71-76.
点击复制

孕穗期剪叶对稻田甲烷排放的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第49卷
期数:
2021年第23期
页码:
71-76
栏目:
遗传育种与耕作栽培
出版日期:
2021-12-05

文章信息/Info

Title:
Influences of leaf cutting on methane emissions in paddy fields at booting stage
作者:
王澜1 赵步洪2 张亚军3 蒋红亮1 李国明1 刘立军3 陈云1
1. 扬州大学生物科学与技术学院,江苏扬州 225009; 2.江苏里下河地区农业科学研究所,江苏扬州 225007;3.扬州大学农学院,江苏扬州 225009
Author(s):
Wang Lanet al
关键词:
水稻剪叶甲烷排放根系非结构性碳水化合物NSC/TOC
Keywords:
-
分类号:
S511.01
DOI:
-
文献标志码:
A
摘要:
水稻根系对稻田甲烷排放有重要影响,剪叶可以调节水稻源库关系和根冠生长,但其对稻田甲烷排放的调控效应及机制尚不清楚。以扬稻6号(籼稻)和日本晴(粳稻)为材料,在大田栽培条件下对孕穗期水稻植株进行剪叶处理,研究植株与土壤的相关性状及其对稻田甲烷排放的影响。结果表明,与对照相比(未剪叶),剪叶处理显著降低了稻田甲烷排放通量,扬稻6号和日本晴2个品种的甲烷排放通量在剪叶36 h后分别比对照降低了23.0%和221%。剪叶极显著降低了水稻叶面积指数,但其对根系形态特征、根系泌氧能力和氧化力无显著影响;剪叶处理使根中非结构性碳水化合物(NSC)和根系分泌物总有机碳(TOC)含量显著降低,但使2个品种根中NSC/TOC分别增加了33.1%和28.9%。Mantel检验分析表明,根中NSC/TOC是影响稻田甲烷通量和产甲烷菌最主要的因素。这些结果表明,剪叶处理可以调节光合产物在根系和根际土壤中的分配,提高NSC/TOC,导致土壤中产甲烷菌数量下降进而减少稻田甲烷排放。
Abstract:
-

参考文献/References:

[1]Schaefer H. On the causes and consequences of recent trends in atmospheric methane[J]. Current Climate Change Reports,2019,5(4):259-274.
[2]Conrad R.The global methane cycle:recent advances in understanding the microbial processes involved[J]. Environmental Microbiology Reports,2009,1(5):285-292.
[3]Tokida T,Adachi M,Cheng W G,et al. Methane and soil CO2 production from current-season photosynthates in a rice paddy exposed to elevated CO2 concentration and soil temperature[J]. Global Change Biology,2011,17(11):3327-3337.
[4]Su J,Hu C,Yan X,et al. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice[J]. Nature,2015,523(7562):602-606.
[5]He A B,Wang W Q,Jiang G L,et al. Source-sink regulation and its effects on the regeneration ability of ratoon rice[J]. Field Crops Research,2019,236(1):155-164.
[6]吴降星,郑许松,周光华,等. 不同生育期剪叶对水稻生长、产量及生理的影响[J]. 应用昆虫学报,2013,50(3):651-658.
[7]Kuzyakov Y,Gavrichkova O.Review:Time lag between photosynthesis and carbon dioxide efflux from soil:a review of mechanisms and controls[J]. Global Change Biology,2010,16(12):3386-3406.
[8]Yuan Q A,Pump J,Conrad R. Partitioning of CH4 and CO2 production originating from rice straw,soil and root organic carbon in rice microcosms[J]. PLoS One,2012,7(11):e49073.
[9]Chen Y,Li S Y,Zhang Y J,et al. Rice root morphological and physiological traits interaction with rhizosphere soil and its effect on methane emissions in paddy fields[J]. Soil Biology and Biochemistry,2019,129:191-200.
[10]Wang Z Q,Zhang W Y,Beebout S S,et al. Grain yield,water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates[J]. Field Crops Research,2016,193:54-69.
[11]Ota Y. Diagnostic methods for the measurement of root activity in rice plant[J]. Japan Agricultural Research Quarterly,1970,5(3):1-6.
[12]Kludze H K,DeLaune R D,Jr Patrick W H.Aerenchyma formation and methane and oxygen exchange in rice[J]. Soil Science Society of America Journal,1993,57(2):386-391.
[13]杨靖睿,曹培培,杨凯,等. CO2浓度升高和不同氮肥水平下源库处理对粳稻茎鞘非结构性碳水化合物积累和转运的影响[J]. 生态学杂志,2021,40(3):615-626.
[14]李杰,冯跃华,牟桂婷,等. 剪叶、粘叶处理对水稻剑叶主脉两侧SPAD值及籽粒产量的影响[J]. 中国稻米,2018,24(6):40-46.
[15]van der Gon H A C D,Kropff M J,van Breemen N,et al. Optimizing grain yields reduces CH4 emissions from rice paddy fields[J]. PNAS,2002,99(19):12021-12024.
[16]Du L,Wang Y F,Shan Z,et al. Comprehensive analysis of SUSIBA2 rice:The low-methane trait and associated changes in soil carbon and microbial communities[J]. Science of the Total Environment,2021,764:144508.
[17]梁娴,赵建华,罗充.不同修剪方式对黑麦草叶绿素、根系活力的影响[J]. 贵州师范大学学报(自然科学版),2010,28(3):4-7.
[18]凌启鸿,凌励.水稻不同层次根系的功能及对产量形成作用的研究[J]. 中国农业科学,1984,17(5):3-11.
[19]江瑜,管大海,张卫建.水稻植株特性对稻田甲烷排放的影响及其机制的研究进展[J]. 中国生态农业学报,2018,26(2):175-181.
[20]Dietze M C,Sala A,Carbone M S,et al. Nonstructural carbon in woody plants[J]. Annual Review of Plant Biology,2014,65(1):667-687.
[21]Xiao M L,Zang H D,Ge T D,et al. Effect of nitrogen fertilizer on rice photosynthate allocation and carbon input in paddy soil[J]. European Journal of Soil Science,2019,70(4):786-795.

相似文献/References:

[1]马旭俊,刘春娟,吕世博,等.绿色荧光蛋白基因在水稻遗传转化中的应用[J].江苏农业科学,2013,41(04):35.
[2]李岳峰,居立海,张来运,等.水分胁迫下丛枝菌根对水稻/绿豆间作系统 作物生长和氮磷吸收的影响[J].江苏农业科学,2013,41(04):58.
[3]崔月峰,孙国才,王桂艳,等.不同施氮水平和前氮后移措施对水稻产量 及氮素利用率的影响[J].江苏农业科学,2013,41(04):66.
[4]张其蓉,宋发菊,田进山,等.长江中下游稻区水稻区域试验品种抗稻瘟病鉴定与评价[J].江苏农业科学,2013,41(04):92.
[5]王麒,张小明,卞景阳,等.不同插秧密度对黑龙江省第二积温带水稻产量及产量构成的影响[J].江苏农业科学,2013,41(05):60.
 Wang Qi,et al.Effect of different transplanting density on yield and yield component of rice in second temperature zone of Heilongjiang Province[J].Jiangsu Agricultural Sciences,2013,41(23):60.
[6]张国良,张森林,丁秀文,等.基质厚度和含水量对水稻育秧的影响[J].江苏农业科学,2013,41(05):62.
 Zhang Guoliang,et al.Effects of substrate thickness and water content on growth of rice seedlings[J].Jiangsu Agricultural Sciences,2013,41(23):62.
[7]赵忠宝,朱清海.稻-蟹-鳅生态系统的能值分析[J].江苏农业科学,2013,41(05):349.
 Zhao Zhongbao,et al.Emergy analysis of paddy-crab-loach ecosystem[J].Jiangsu Agricultural Sciences,2013,41(23):349.
[8]杨红福,姚克兵,束兆林,等.甲氧基丙烯酸酯类杀菌剂对水稻恶苗病的田间药效[J].江苏农业科学,2014,42(12):166.
 Yang Hongfu,et al.Field efficacy of strobilurin fungicides against rice bakanae disease[J].Jiangsu Agricultural Sciences,2014,42(23):166.
[9]唐成,陈露,安敏敏,等.稻瘟病诱导水稻幼苗叶片氧化还原系统的特征谱变化[J].江苏农业科学,2014,42(12):141.
 Tang Cheng,et al.Characteristic spectral changes of redox homeostasis system in rice seedling leaves induced by rice blast[J].Jiangsu Agricultural Sciences,2014,42(23):141.
[10]万云龙.优质水稻—春甘蓝轮作高效栽培模式[J].江苏农业科学,2014,42(12):90.
 Wan Yunlong.Efficient cultivation mode of high quality rice-spring cabbage rotation[J].Jiangsu Agricultural Sciences,2014,42(23):90.

备注/Memo

备注/Memo:
收稿日期:2021-06-15
基金项目:江苏省农业科技自主创新资金[编号:CX(17)3042];江苏省自然科学基金(编号:BK20181214);国家自然科学基金(编号:31871557、32071947)。
作者简介:王澜(2001—),女,江苏镇江人,主要从事水稻生理生态研究。E-mail:3465393772@qq.com。
通信作者:陈云,博士,副教授,主要从事水稻生理生态研究。E-mail:yunchen@yzu.edu.cn。
更新日期/Last Update: 2021-12-05