|本期目录/Table of Contents|

[1]常青.生物炭与氮肥配施对玉米叶片氮素利用及代谢的影响[J].江苏农业科学,2022,50(20):86-94.
 Chang Qing.Effects of combined application of biochar and nitrogen fertilizer on nitrogen utilization and metabolism of maize leaves[J].Jiangsu Agricultural Sciences,2022,50(20):86-94.
点击复制

生物炭与氮肥配施对玉米叶片氮素利用及代谢的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第20期
页码:
86-94
栏目:
遗传育种与耕作栽培
出版日期:
2022-10-20

文章信息/Info

Title:
Effects of combined application of biochar and nitrogen fertilizer on nitrogen utilization and metabolism of maize leaves
作者:
常青
濮阳职业技术学院,河南濮阳 457000
Author(s):
Chang Qing
关键词:
生物炭玉米氮利用代谢组学15N同位素示踪
Keywords:
-
分类号:
S513.06
DOI:
-
文献标志码:
A
摘要:
采用盆栽试验,设置3个生物炭(BC)施用比例,分别为BC0(0)、BC3(3%)、BC9(9%),3个氮(N)水平,分别为N100(100%)、N80(80%)、N60(60%),采用15N同位素标记、代谢组学及实时荧光定量聚合酶链式反应(qT-PCR)手段探索生物炭与氮肥配施对玉米叶片氮素利用及代谢的影响。结果表明,玉米氮素利用率(NUE)为14.71%~2940%,不添加BC(BC0)处理下,玉米植株的NUE随着施N量的降低而降低,BC(BC3、BC9)处理下,NUE随着施N量减少而明显增加,以BC3N60处理的NUE最高、氮肥损失率最低。BC可通过介导氨基酸、糖和有机酸库的代谢,上调相关代谢基因(ZmGS1、ZmAS1M)的表达水平,从而影响玉米叶片代谢组学和N组分(NH+4-N、NO-3-N、NO-2-N、TN、TC)含量。此外,典范对应分析(CCA)、网络相关性分析结果表明,代谢物间的网络连接密度、植物矿质N组分与代谢组密切相关;双因素方差分析结果进一步表明,供N水平与BC施用比例存在交互作用。综上所述,减少N供应水平玉米氮素利用率显著降低,在此基础上施用生物炭可通过调节N代谢及上调N代谢基因改善玉米氮素吸收,以3%生物炭比例和60%施氮水平处理(BC3N60)的效果较佳。
Abstract:
-

参考文献/References:

[1]邢瑶,马兴华. 氮素形态对植物生长影响的研究进展[J]. 中国农业科技导报,2015,17(2):109-117.
[2]武姣娜,魏晓东,李霞,等. 植物氮素利用效率的研究进展[J]. 植物生理学报,2018,54(9):1401-1408.
[3]刘钦普. 农田氮磷面源污染环境风险研究评述[J]. 土壤通报,2016,47(6):1506-1513.
[4]马泉,王亚华,王梦尧,等. 缓控释肥的发展应用与评价体系研究进展[J]. 江苏农业科学,2020,48(18):24-29.
[5]许云翔,何莉莉,陈金媛,等. 生物炭对农田土壤氨挥发的影响机制研究进展[J]. 应用生态学报,2020,31(12):4312-4320.
[6]张磊,柳璇,韩俊杰,等. 生物炭对土壤团聚体及结合态碳库影响研究进展[J]. 山东农业科学,2016,48(9):157-161.
[7]邱月,张辉. 包膜氮肥、保水剂和生物炭在控制农田土壤氮素损失方面的应用综述[J]. 江苏农业科学,2015,43(10):417-422.
[8]杨宪龙,同延安,路永莉,等. 农田氮肥利用率计算方法研究进展[J]. 应用生态学报,2015,26(7):2203-2212.
[9]Martins M R,SantAnna S A C,Zaman M,et al. Strategies for the use of urease and nitrification inhibitors with urea:impact on N2O and NH3 emissions,fertilizer-15N recovery and maize yield in a tropical soil[J]. Agriculture,Ecosystems & Environment,2017,247:54-62.
[10]Prinsi B,Espen L. Mineral nitrogen sources differently affect root glutamine synthetase isoforms and amino acid balance among organs in maize[J]. BMC Plant Biology,2015,15:96.
[11]Schlüter U,Colmsee C,Scholz U,et al. Adaptation of maize source leaf metabolism to stress related disturbances in carbon,nitrogen and phosphorus balance[J]. BMC Genomics,2013,14:442.
[12]郭凤丹,王兴军,侯蕾,等. 植物代谢组学研究进展[J]. 山东农业科学,2017,49(12):154-162.
[13]葛少华,阎海涛,陈奇,等. 生物质炭与化肥氮配施对植烟土壤微生物功能多样性的影响[J]. 土壤,2019,51(4):708-714.
[14]中华人民共和国农业部. 植物产品中亚硝酸盐与硝酸盐的测定离子色谱法:NY/T 1375—2007[S]. 北京:中国标准出版社,2007.
[15]张志良,瞿伟菁,李小方. 植物生理学实验指导[M]. 4版.北京:高等教育出版社,2009.
[16]Sun C X,Gao X X,Fu J Q,et al. Metabolic response of maize (Zea mays L.) plants to combined drought and salt stress[J]. Plant and Soil,2015,388(1/2):99-117.
[17]朱宝国,韩旭东,张春峰,等. 氮肥深追可提高玉米对15N的吸收、分配及利用[J]. 植物营养与肥料学报,2016,22(6):1696-1700.
[18]Agegnehu G,Nelson P N,Bird M I. The effects of biochar,compost and their mixture and nitrogen fertilizer on yield and nitrogen use efficiency of barley grown on a Nitisol in the highlands of Ethiopia[J]. Science of the Total Environment,2016,569/570:869-879.
[19]刘杰云,邱虎森,王聪,等. 生物质炭对双季稻田土壤反硝化功能微生物的影响[J]. 环境科学,2019,40(5):2394-2403.
[20]Krapp A,Berthomé R,Orsel M,et al. Arabidopsis roots and shoots show distinct temporal adaptation patterns toward nitrogen starvation[J]. Plant Physiology,2011,157(3):1255-1282.
[21]Olmo M,Villar R,Salazar P,et al. Changes in soil nutrient availability explain biochars impact on wheat root development[J]. Plant and Soil,2016,399(1/2):333-343.
[22]Allwood J W,Chandra S,Xu Y,et al. Profiling of spatial metabolite distributions in wheat leaves under normal and nitrate limiting conditions[J]. Phytochemistry,2015,115:99-111.
[23]Sun C X,Chen X,Cao M M,et al. Growth and metabolic responses of maize roots to straw biochar application at different rates[J]. Plant and Soil,2017,416(1/2):487-502.
[24]何亚飞,李霞,谢寅峰. 植物中糖信号及其对逆境调控的研究进展[J]. 植物生理学报,2016,52(3):241-249.
[25]曹本福,姜海霞,刘丽,等. 丛枝菌根菌丝网络在植物互作中的作用机制研究进展[J]. 应用生态学报,2021,32(9):3385-3396.
[26]王晓维,徐健程,孙丹平,等. 生物炭对铜胁迫下红壤地油菜苗期叶绿素和保护性酶活性的影响[J]. 农业环境科学学报,2016,35(4):640-646.
[27]牛超,刘关君,曲春浦,等. 谷氨酸合成酶基因及其在植物氮代谢中的调节作用综述[J]. 江苏农业科学,2018,46(9):10-16.
[28]Li Y J,Wang M L,Zhang F X,et al. Effect of post-silking drought on nitrogen partitioning and gene expression patterns of glutamine synthetase and asparagine synthetase in two maize (Zea mays L.) varieties[J]. Plant Physiology and Biochemistry,2016,102:62-69.
[29]Xiao Q,Zhu L X,Zhang H P,et al. Soil amendment with biochar increases maize yields in a semi-arid region by improving soil quality and root growth[J]. Crop and Pasture Science,2016,67(5):495.
[30]Prendergast-Miller M T,Duvall M,Sohi S P. Localisation of nitrate in the rhizosphere of biochar-amended soils[J]. Soil Biology and Biochemistry,2011,43(11):2243-2246.

相似文献/References:

[1]孙建伟.水涝胁迫对玉米细胞保护酶同工酶的影响[J].江苏农业科学,2013,41(04):85.
[2]刘荣,张卫建,齐华,等.密植型玉米“中单909”高产群体结构特征[J].江苏农业科学,2013,41(05):56.
 Liu Rong,et al.Study on high yield population structure of close planting maize cultivar “Zhongdan 909”[J].Jiangsu Agricultural Sciences,2013,41(20):56.
[3]沈浜凯,肖龙云,冯乃杰,等.黄腐酸和AM真菌对玉米幼苗抗旱性的影响[J].江苏农业科学,2013,41(05):64.
 Shen Bangkai,et al.Effects of fulvic acid and AM fungi on drought resistance of maize seedlings[J].Jiangsu Agricultural Sciences,2013,41(20):64.
[4]张金然,缑艳霞,孙丽鹏.固氮螺菌157对玉米、向日葵的促生长作用[J].江苏农业科学,2014,42(12):116.
 Zhang Jinran,et al.Effects of Azospirillum 157 on growth of maize and sunflower[J].Jiangsu Agricultural Sciences,2014,42(20):116.
[5]白小军,吴燕,牛艳,等.玉米中乙草胺和莠去津残留量GC-MS/MS分析法的建立[J].江苏农业科学,2014,42(11):334.
 Bai Xiaojun,et al().Establishment of GC-MS/MS analysis method of acetochlor and atrazine residues in maize[J].Jiangsu Agricultural Sciences,2014,42(20):334.
[6]邹晓威,王娜,刘芬,等.玉米抗病相关基因在玉米与玉米丝黑穗病菌、玉米黑粉病菌互作过程中的表达差异分析[J].江苏农业科学,2014,42(11):150.
 Zou Xiaowei,et al(0).Different expression of resistance-related genes between Sporisorium reilianum and Ustilago maydis interact with corn[J].Jiangsu Agricultural Sciences,2014,42(20):150.
[7]杨洪兴,陈静,陈艳萍.江苏省玉米机械化生产的发展及育种对策思考[J].江苏农业科学,2014,42(11):116.
 Yang Hongxing,et al().Development and breeding strategy of mechanized production of maize in Jiangsu Province[J].Jiangsu Agricultural Sciences,2014,42(20):116.
[8]张丽妍,霍剑锋,孟繁盛,等.不同肥料、施肥水平及施用方法对玉米产量、性状及效益的影响[J].江苏农业科学,2014,42(11):119.
 Zhang Liyan,et al (9).Effects of different fertilizers,fertilizer levels and fertilizing methods on yield,characters and benefit of maize[J].Jiangsu Agricultural Sciences,2014,42(20):119.
[9]王雷,崔震海,张立军.玉米C4型PEPC全长基因的克隆与表达载体构建[J].江苏农业科学,2014,42(11):26.
 Wang Lei,et al().Cloning and expression vector construction of full-length C4 type PEPC gene in maize[J].Jiangsu Agricultural Sciences,2014,42(20):26.
[10]雷恩,赵光明,刘艳红.不同稀释浓度松土保水剂对玉米营养生长的影响[J].江苏农业科学,2013,41(06):77.
 Lei En,et al.Effect of different dilutions of super absorbent polymer on vegetative growth of maize[J].Jiangsu Agricultural Sciences,2013,41(20):77.
[11]杨怡森,袁小会,廖国婷,等.菌根共生条件下施加生物炭对玉米根系及生长的影响[J].江苏农业科学,2022,50(17):90.
 Yang Yisen,et al.Effects of biochar application on root system and growth of maize under mycorrhizal symbiosis[J].Jiangsu Agricultural Sciences,2022,50(20):90.
[12]李海珀,水清明,贾莉.氮肥减量配施生物炭对玉米根系生理及氮素去向的影响[J].江苏农业科学,2022,50(21):102.
 Li Haipo,et al.Effects of nitrogen fertilizer reduction combined with biochar on maize root physiology and nitrogen whereabouts[J].Jiangsu Agricultural Sciences,2022,50(20):102.
[13]崔文芳,高聚林,王志刚,等.生物炭与氮肥减量调控对氮高效玉米田土壤养分的影响[J].江苏农业科学,2023,51(5):233.
 Cui Wenfang,et al.Impacts of biochar and nitrogen reduction on soil nutrients in maize field[J].Jiangsu Agricultural Sciences,2023,51(20):233.

备注/Memo

备注/Memo:
收稿日期:2021-12-19
基金项目:河南省高等学院重点科研项目(编号:19B610002)。
作者简介:常青(1972—),女,河南濮阳人,副教授,主要从事农业施肥优化与植物生理研究。E-mail:pychang@126.com。
更新日期/Last Update: 2022-10-20