|本期目录/Table of Contents|

[1]李铮,王金辉,丁丽丽,等.贝莱斯芽孢杆菌菌株NZ-4生防潜能及基因组学分析[J].江苏农业科学,2023,51(2):117-125.
 Li Zheng,et al.Biocontrol potential and genomic analysis of Bacillus velezensis strain NZ-4[J].Jiangsu Agricultural Sciences,2023,51(2):117-125.
点击复制

贝莱斯芽孢杆菌菌株NZ-4生防潜能及基因组学分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第2期
页码:
117-125
栏目:
植物保护
出版日期:
2023-01-20

文章信息/Info

Title:
Biocontrol potential and genomic analysis of Bacillus velezensis strain NZ-4
作者:
李铮1王金辉1丁丽丽2张岱1田梦君3杨志辉1朱杰华1
1.河北农业大学植物保护学院/河北省植物病虫害生物防治工程技术研究中心,河北保定 071000;2.河北省农林科学院生物技术与食品科学研究所,河北石家庄 050057; 3.秦皇岛市植保植检站,河北秦皇岛 066000
Author(s):
Li Zhenget al
关键词:
贝莱斯芽孢杆菌生物防治基因组学抗生素尖孢镰刀菌
Keywords:
-
分类号:
S182
DOI:
-
文献标志码:
A
摘要:
明确菌株NZ-4无菌发酵滤液抑菌稳定性、抑菌促生相关酶类活性、抑菌物质遗传基础,为该生防菌剂的开发利用提供依据。利用生长速率法测定菌株NZ-4发酵液在不同理化条件下对尖孢镰刀菌的抑菌稳定性;通过鉴定培养基检测菌株NZ-4的抗病促生能力;结合第二代(Illumina NovaSeq)及第三代(PacBio)测序数据拼装出NZ-4基因组完整序列,通过系统发育分析确定该菌株的生物学种类,并将基因组序列与各数据库进行比对分析,预测菌株NZ-4产生的酶类和抗生素相关基因。结果表明,菌株NZ-4无菌发酵滤液耐高温、耐酸碱、耐紫外线,对胰蛋白酶不敏感。该菌株具备能够产生几丁质酶、果胶酶、纤维素酶、蛋白酶、酪蛋白酶并合成铁载体等分解真菌细胞壁和促生能力。NZ-4基因组中含与之对应的几丁质酶、葡聚糖酶、纤维素酶、蛋白酶的基因,还含有编码表面活性素、泛革素、杆菌霉素等9种抗生素的基因簇。菌株NZ-4所产生的抑菌活性物质稳定性高,且基因组内存在与之相应的抗生素基因簇和破坏真菌细胞壁的酶类基因。说明该菌株具有很好的生防潜力,适合进一步开发成生防菌剂。
Abstract:
-

参考文献/References:

[1]安小敏,胡俊,武建华,等. 马铃薯枯萎病病原菌研究概述[J]. 中国马铃薯,2017,31(5):302-306.
[2]苗丹,路妍,陈雅寒,等. 植物免疫剂JM1号对马铃薯枯萎病菌的抑制作用研究[J]. 内蒙古农业大学学报(自然科学版),2019,40(3):92-96.
[3]马佳,李颖,胡栋,等. 芽孢杆菌生物防治作用机理与应用研究进展[J]. 中国生物防治学报,2018,34(4):639-648.
[4]张德锋,高艳侠,王亚军,等. 贝莱斯芽孢杆菌的分类、拮抗功能及其应用研究进展[J]. 微生物学通报,2020,47(11):3634-3649.
[5]沙月霞,隋书婷,曾庆超,等. 贝莱斯芽孢杆菌E69预防稻瘟病等多种真菌病害的潜力[J]. 中国农业科学,2019,52(11):1908-1917.
[6]Wang G F,Meng J F,Tian T,et al. Endophytic Bacillus velezensis strain B-36 is a potential biocontrol agent against lotus rot caused by Fusarium oxysporum[J]. Journal of Applied Microbiology,2020,128(4):1153-1162.
[7]Devi S,Kiesewalter H T,Kovács R,et al. Depiction of secondary metabolites and antifungal activity of Bacillus velezensis DTU001[J]. Synthetic and Systems Biotechnology,2019,4(3):142-149.
[8]Wang C Q,Zhao D Y,Qi G Z,et al. Effects of Bacillus velezensis FKM10 for promoting the growth of Malus hupehensis Rehd. and inhibiting Fusarium verticillioides[J]. Frontiers in Microbiology,2020,10:2889.
[9]陶永梅,潘洪吉,黄健,等. 新型生防微生物因子贝莱斯芽孢杆菌(Bacillus velezensis)的研究与应用[J]. 中国植保导刊,2019,39(9):26-33.
[10]谢鑫,张踞林,王红宁,等. 芽孢杆菌中天然脂肽类抗生素的合成及作用机制研究进展[J]. 中国抗生素杂志,2021,46(5):362-370.
[11]张博阳,朱天辉,韩珊,等. 桑氏链霉菌几丁质酶ChiKJ40基因的克隆表达及其抑菌作用[J]. 微生物学通报,2018,45(5):1016-1026.
[12]李彩虹,杨志辉,张岱,等. 马铃薯枯萎病拮抗菌的筛选与鉴定[J]. 江苏农业科学,2018,46(13):92-95.
[13]Fan B,Blom J,Klenk H P,et al. Bacillus amyloliquefaciens,Bacillus velezensis,and Bacillus siamensis form an “operational group B.amyloliquefaciens” within the B. subtilis species complex[J]. Frontiers in Microbiology,2017,8:22.
[14]李彩虹. 抗马铃薯枯萎病生防芽孢杆菌筛选鉴定及防效评价[D]. 保定:河北农业大学,2017.
[15]邴辉,王仲康,杜秉海,等. 基因组关联分析地衣芽孢杆菌LCDD6对核桃苗的促生作用[J]. 应用与环境生物学报,2022,28(3):588-595.
[16]方中达. 植病研究方法[M]. 3版.北京:中国农业出版社,1998.
[17]胡晓,张敏,刘彭强,等. 快速、准确鉴别产几丁质酶菌株的新方法[J]. 植物保护,2010,36(4):163-166.
[18]左勇,秦世蓉,何颂捷,等. 酒糟中高产纤维素酶菌株的筛选及鉴定[J]. 饲料研究,2021,44(5):82-87.
[19]东秀珠,蔡妙英. 常见细菌系统鉴定手册[M]. 北京:科学出版社,2001.
[20]Schwyn B,Neilands J B. Universal chemical assay for the detection and determination of siderophores[J]. Analytical Biochemistry,1987,160(1):47-56.
[21]Chin C S,Peluso P,Sedlazeck F J,et al. Phased diploid genome assembly with single-molecule real-time sequencing[J]. Nature Methods,2016,13(12):1050-1054.
[22]Koren S,Walenz B P,Berlin K,et al. Canu:scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation[J]. Genome Research,2017,27(5):722-736.
[23]Walker B J,Abeel T,Shea T,et al. Pilon:an integrated tool for comprehensive microbial variant detection and genome assembly improvement[J]. PLoS One,2014,9(11):e112963.
[24]Emms D M,Kelly S. OrthoFinder:phylogenetic orthology inference for comparative genomics[J]. Genome Biology,2019,20(1):238.
[25]Edgar R C. MUSCLE:multiple sequence alignment with high accuracy and high throughput[J]. Nucleic Acids Research,2004,32(5):1792-1797.
[26]Kumar S,Stecher G,Li M,et al. MEGA X:molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution,2018,35(6):1547-1549.
[27]Altschul S F,Gish W,Miller W,et al. Basic local alignment search tool[J]. Journal of Molecular Biology,1990,215(3):403-410.
[28]Galperin M Y,Wolf Y I,Makarova K S,et al. COG database update:focus on microbial diversity,model organisms,and widespread pathogens[J]. Nucleic Acids Research,2020,49(D1):D274-D281.
[29]Huang L,Zhang H,Wu P Z,et al. dbCAN-seq:a database of carbohydrate-active enzyme (CAZyme) sequence and annotation[J]. Nucleic Acids Research,2018,46(D1):D516-D521.
[30]Blin K,Shaw S,Kloosterman A M,et al. antiSMASH 6.0:improving cluster detection and comparison capabilities[J]. Nucleic Acids Research,2021,49(W1):W29-W35.
[31]Fan B,Wang C,Song X F,et al. Bacillus velezensis FZB42 in 2018:the gram-positive model strain for plant growth promotion and biocontrol[J]. Frontiers in Microbiology,2018,9:2491.
[32]李永丽,周洲,尹新明. 贝莱斯芽孢杆菌Mr12预防苹果轮纹病等病害的潜力及其全基因组分析[J]. 果树学报,2021,38(9):1459-1467.
[33]孙平平,崔建潮,贾晓辉,等. 贝莱斯芽孢杆菌L-1对梨灰霉和青霉病菌的抑制作用评价及全基因组分析[J]. 微生物学报,2018,58(9):1637-1646.
[34]胡忠亮,郑催云,田兴一,等. 解淀粉芽孢杆菌HZM9菌株发酵液的抑菌谱及稳定性测定[J]. 南京林业大学学报(自然科学版),2017,41(3):65-70.
[35]Wilson C L,Wisniewski M E. Biological control of postharvest diseases of fruits and vegetables:an emerging technology[J]. Annual Review of Phytopathology,1989,27(1):425-441.
[36]张德锋,高艳侠,可小丽,等. 贝莱斯芽孢杆菌LF01基因组序列分析及其代谢产物的生防作用[J]. 水产学报,2022,46(2):196-206.
[37]Teixeira G M,Mosela M,Nicoletto M L A,et al. Genomic insights into the antifungal activity and plant growth-promoting ability in Bacillus velezensis CMRP 4490[J]. Frontiers in Microbiology,2021,11:618415.
[38]Malanicheva I A,Kozlov D G,Efimenko T A,et al. New antibiotics produced by Bacillus subtilis strains[J]. Microbiology,2014,83(4):352-356.
[39]Chen W C,Juang R S,Wei Y H. Applications of a lipopeptide biosurfactant,surfactin,produced by microorganisms[J]. Biochemical Engineering Journal,2015,103:158-169.
[40]Tang J,He J G,Liu T T,et al. Removal of heavy metal from sludge by the combined application of a biodegradable biosurfactant and complexing agent in enhanced electrokinetic treatment[J]. Chemosphere,2017,189:599-608.
[41]Hotta K,Kim C Y,Fox D T,et al. Siderophore-mediated iron acquisition in Bacillus anthracis and related strains[J]. Microbiology,2010,156(Pt 7):1918-1925.
[42]Müller S,Strack S N,Hoefler B C,et al. Bacillaene and sporulation protect Bacillus subtilis from predation by Myxococcus xanthus[J]. Applied and Environmental Microbiology,2014,80(18):5603-5610.
[43]左豫虎,康振生,杨传平,等. β-1,3-葡聚糖酶和几丁质酶活性与大豆对疫霉根腐病抗性的关系[J]. 植物病理学报,2009,39(6):600-607.

相似文献/References:

[1]王奎萍,陈云,刘红霞,等.水稻纹枯病的生物防治[J].江苏农业科学,2013,41(05):110.
 Wang Kuiping,et al.Biological control of rice sheath blight disease[J].Jiangsu Agricultural Sciences,2013,41(2):110.
[2]闫会,薛程,李强,等.甘薯田蛴螬防治的现状与展望[J].江苏农业科学,2014,42(12):191.
 Yan Hui,et al.Status and prospects of prevention and control of grubs in sweet potato fields[J].Jiangsu Agricultural Sciences,2014,42(2):191.
[3]段雅婕,陈晶晶,周登博,等.豆粕有机质发酵液中香蕉枯萎病拮抗菌的筛选与鉴定[J].江苏农业科学,2015,43(12):168.
 Duan Yajie,et al.Screening and identification of antagonistic bacteria against banana fusarium wilt in soybean meal organic fermented liquid[J].Jiangsu Agricultural Sciences,2015,43(2):168.
[4]范瑛阁,赵静,黄克强,等.新疆阿克苏地区红枣黑斑病病原的鉴定及拮抗菌筛选[J].江苏农业科学,2015,43(12):175.
 Fan Yingge,et al.Identification of jujube black spot pathogen and screening of its antagonistic bacteria in Akesu,Xinjiang[J].Jiangsu Agricultural Sciences,2015,43(2):175.
[5]周小琪,曹成亮,丁盼,等.拮抗放线菌KLBMP06061的鉴定及其对苹果轮纹病菌的抑菌作用[J].江苏农业科学,2015,43(12):138.
 Zhou Xiaoqi,et al.Identification of an antagonistic Actinomycetes strain KLBMP06061 and its antagonistic activity against Macrophoma kawatsukai[J].Jiangsu Agricultural Sciences,2015,43(2):138.
[6]李巍,张岩,张妤,等.生物防治领域的专利信息分析与吉林省的对策[J].江苏农业科学,2014,42(10):380.
 Li Wei,et al.Analysis of patent information in biocontrol field and countermeasures of Jilin Province[J].Jiangsu Agricultural Sciences,2014,42(2):380.
[7]黄霄,周登博,张锡炎,等.1株香蕉枯萎病菌拮抗菌鉴定及抑菌效果[J].江苏农业科学,2013,41(07):90.
 Huang Xiao,et al.Identification and bacteriostatic effect of a single banana Fusarium oxysporum antagonistic bacteria[J].Jiangsu Agricultural Sciences,2013,41(2):90.
[8]陈志龙,陈杰,许建平,等.番茄青枯病生物防治研究进展[J].江苏农业科学,2013,41(08):131.
 Chen Zhilong,et al.Research progress of tomato bacterial wilt biocontrol[J].Jiangsu Agricultural Sciences,2013,41(2):131.
[9]杨月,郭春兰,王介夫,等.马铃薯立枯丝核菌致病力及其生物防治初探[J].江苏农业科学,2014,42(08):129.
 Yang Yue,et al.Primary study on pathogenicity and biocontrol of Rhizoctonia solani in potato[J].Jiangsu Agricultural Sciences,2014,42(2):129.
[10]卜翠萍,徐建明,施保国,等.江苏省淮安市天敌昆虫资源调查[J].江苏农业科学,2013,41(11):371.
 Bu Cuiping,et al.Investigation of natural enemy insects resources in Huaian,Jiangsu Province[J].Jiangsu Agricultural Sciences,2013,41(2):371.
[11]宋文欣,陈清华,杨惠贞,等.桑枝枯菌核病病菌拮抗芽孢杆菌的筛选和鉴定[J].江苏农业科学,2020,48(22):106.
 Song Wenxin,et al.Screening and identification of antagonistic Bacillus spp. against Sclerotinia sclertiorum[J].Jiangsu Agricultural Sciences,2020,48(2):106.
[12]张强,张艳茹,霍云凤,等.禾谷镰刀菌拮抗菌ZQT-31的分离与鉴定[J].江苏农业科学,2021,49(9):80.
 Zhang Qiang,et al.Isolation and identification of antagonistic bacteria ZQT-31 against Fusarium graminearum[J].Jiangsu Agricultural Sciences,2021,49(2):80.

备注/Memo

备注/Memo:
收稿日期:2022-03-31
基金项目:河北省薯类产业技术体系创新团队专项(编号:HBCT2018080205);现代农业产业技术体系建设专项(编号:CARS-09-P18)。
作者简介:李铮(1994—),男,河北邯郸人,硕士研究生,主要从事生物防治研究。E-mail:415228393@qq.com。
通信作者:杨志辉,博士,教授,主要从事马铃薯病害研究,E-mail:bdyzh@hebau.edu.cn;朱杰华,博士,教授,主要从事马铃薯病害研究,E-mail:zhujiehua356@126.com。
更新日期/Last Update: 2023-01-20