|本期目录/Table of Contents|

[1]郭娜,张玥,刘贤雍,等.丛枝菌根真菌提高植物耐盐性生理机制研究进展[J].江苏农业科学,2023,51(4):16-23.
 Guo Na,et al.Research progress on physiological mechanism of arbuscular mycorrhizal fungi improve plant salt tolerance[J].Jiangsu Agricultural Sciences,2023,51(4):16-23.
点击复制

丛枝菌根真菌提高植物耐盐性生理机制研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第4期
页码:
16-23
栏目:
专论与综述
出版日期:
2023-02-20

文章信息/Info

Title:
Research progress on physiological mechanism of arbuscular mycorrhizal fungi improve plant salt tolerance
作者:
郭娜 张玥 刘贤雍 乔巍 接伟光
黑龙江东方学院,黑龙江哈尔滨150066
Author(s):
Guo Naet al
关键词:
丛枝菌根真菌菌根共生体耐盐性生理机制盐胁迫
Keywords:
-
分类号:
S182;S184
DOI:
-
文献标志码:
A
摘要:
随着经济的发展,诸多环境问题以及不良的农业生产活动方式使得土壤盐渍化程度加重,土壤盐渍化的改良成为全球性问题,盐碱地资源再度开发利用成为各地关注重点。丛枝菌根真菌是一类可以与植物形成共生关系并为其改善多种抗逆特性的活体微生物,在协助宿主面对各类胁迫作用时,通过协助宿主在胁迫作用下的养分等物质吸收来减轻胁迫作用的负面影响,其在农业和生态环境方面的应用得到广泛关注。本文从盐胁迫下丛枝菌根真菌对宿主植物的影响及对根际土壤的影响等2个角度综述了其提高植物耐盐性生理机制,初步总结了丛枝菌根真菌在促进植物应对盐胁迫时的基本策略,旨在为了解该研究领域的现状和发展提供参考,为丛枝菌根真菌提高盐渍土生产力、扩大耕地面积以及提高作物产量等实际意义提供科学依据,为增强植物耐盐性和盐碱地改良的研究提供新的思路。
Abstract:
-

参考文献/References:

[1]王幼珊,刘润进. 球囊菌门丛枝菌根真菌最新分类系统菌种名录[J]. 菌物学报,2017,36(7):820-850.
[2]Jeffries P,Gianinazzi S,Perotto S,et al. The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility[J]. Biology and Fertility of Soils,2003,37(1):1-16.
[3]van der Heijden M G A,Wiemken A,Sanders I R.Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co‐occurring plant[J]. New Phytologist,2003,157(3):569-578.
[4]陈淑敏,金钊,张晶,等. 陕北不同沟道土地盐碱化现状及影响因素[J]. 地球环境学报,2020,11(1):81-89.
[5]Ruiz-Lozano J M,Porcel R,Azcón C,et al. Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants:new challenges in physiological and molecular studies[J]. Journal of Experimental Botany,2012,63(11):4033-4044.
[6]Aroca R,Ruiz-Lozano J M,Zamarreo  M,et al. Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants[J]. Journal of Plant Physiology,2013,170(1):47-55.
[7]徐芬芬. 干旱和盐复合逆境对芝麻种子萌发和幼苗生长的影响[J]. 吉林农业科学,2013,38(4):15-17.
[8]Hashem A,Abd_Allah E F,Alqarawi A A,et al. Comparing symbiotic performance and physiological responses of two soybean cultivars to arbuscular mycorrhizal fungi under salt stress[J]. Saudi Journal of Biological Sciences,2019,26(1):38-48.
[9]Ren C G,Kong C C,Xie Z H.Role of abscisic acid in strigolactone-induced salt stress tolerance in arbuscular mycorrhizal Sesbania cannabina seedlings[J]. BMC Plant Biology,2018,18(1):74.
[10]胡华冉,杜光辉,徐云,等. 盐碱胁迫对两个大麻品种幼苗生长和生理特征的影响[J]. 云南大学学报(自然科学版),2016,38(6):974-981.
[11]刘洪光. AM真菌提高枸杞耐盐性的机制研究[D]. 杨凌:西北农林科技大学,2016.
[12]李文彬,宁楚涵,郭绍霞. AM真菌对百合调节激素平衡与细胞渗透性以及改善耐盐性的研究[J]. 西北植物学报,2018,38(8):1498-1506.
[13]杜冬冬. 盐碱条件下植物根际菌促生作用的研究[D]. 泰安:山东农业大学,2020.
[14]刘旭光. 盐碱胁迫下接种AMF对蒙古黄芪幼苗生长及有效成分含量的影响[D]. 呼和浩特:内蒙古大学,2017.
[15]郑爱珍,孟鑫,韩霜,等. 丛枝菌根真菌对水培番茄生长的影响[J]. 中国瓜菜,2020,33(11):48-51.
[16]Gill S S,Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry,2010,48(12):909-930.
[17]Evelin H,Kapoor R. Arbuscular mycorrhizal symbiosis modulates antioxidant response in salt-stressed Trigonella foenum-graecum plants[J]. Mycorrhiza,2014,24(3):197-208.
[18]常伟. 丛枝菌根化沙枣苗木耐盐胁迫机制研究[D]. 哈尔滨:东北林业大学,2020.
[19]南雪芹. 不同丛枝菌根真菌(AMF)对茶树生长及耐盐性的影响研究[D]. 杨凌:西北农林科技大学,2016.
[20]Huang Z,He C X,He Z Q,et al. The effects of arbuscular mycorrhizal fungi on reactive oxyradical scavenging system of tomato under salt tolerance[J]. Agricultural Sciences in China,2010,9(8):1150-1159.
[21]Hashem A,Alqarawi A A,Radhakrishnan R,et al. Arbuscular mycorrhizal fungi regulate the oxidative system,hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L.[J]. Saudi Journal of Biological Sciences,2018,25(6):1102-1114.
[22]朱凌骏. 菌根真菌对提高皂荚和榉树耐盐性及促进氮磷吸收的作用研究[D]. 南京:南京林业大学,2019.
[23]Hashem A,Abd_Allah E F,Alqarawi A A,et al. Induction of osmoregulation and modulation of salt stress in Acacia gerrardii Benth. by arbuscular mycorrhizal fungi and Bacillus subtilis (BERA 71)[J]. BioMed Research International,2016,2016:6294098.
[24]Pollastri S,Savvides A,Pesando M,et al. Impact of two arbuscular mycorrhizal fungi on Arundo donax L.[J]. Planta,2018,247(3):573-585.
[25]Murata N,Takahashi S,Nishiyama Y,et al. Photoinhibition of photosystem Ⅱ under environmental stress[J]. Biochimica et Biophysica Acta(Bioenergetics),2007,1767(6):414-421.
[26]Porcel R,Redondo-Gómez S,Mateos-Naranjo E,et al. Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem Ⅱ and reduces non-photochemical quenching in rice plants subjected to salt stress[J]. Journal of Plant Physiology,2015,185:75-83.
[27]平原. 沙枣接种AM真菌和共生固氮放线菌对盐胁迫的响应[D]. 哈尔滨:东北林业大学,2017.
[28]Liang B B,Wang W J,Fan X X,et al. Arbuscular mycorrhizal fungi can ameliorate salt stress in Elaeagnus angustifolia by improving leaf photosynthetic function and ultrastructure[J]. Plant Biology,2021,23(1):232-241.
[29]张艳贺,任伟超,闫嵩,等. 不同生长环境对黄芪叶绿体超微结构的影响[J]. 东北林业大学学报,2016,44(2):15-17,25.
[30]Garg N,Pandey R. Effectiveness of native and exotic arbuscular mycorrhizal fungi on nutrient uptake and ion homeostasis in salt-stressed Cajanus cajan L.[J]. Mycorrhiza,2015,25(3):165-180.
[31]Hashem A,Abd_Allah E F,Alqarawi A A,et al. The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress[J]. Frontiers in Microbiology,2016,7:1089.
[32]Yamato M,Ikeda S,Iwase K. Community of arbuscular mycorrhizal fungi in a coastal vegetation on Okinawa island and effect of the isolated fungi on growth of sorghum under salt-treated conditions[J]. Mycorrhiza,2008,18(5):241-249.
[33]高崇. 接种AM真菌对盐胁迫下杜梨实生苗生长及耐盐性的影响研究[D]. 重庆:西南大学,2013.
[34]胡宗好. 不同盐碱胁迫和磷添加AM真菌对4种植物耐盐碱性的影响[D]. 长春:东北师范大学,2020.
[35]高璿濛. 松嫩盐碱草地蒲公英根围丛枝菌根真菌多样性与功能研究[D]. 哈尔滨:东北林业大学,2019.
[36]付红丽. 丛枝菌根真菌对松嫩草地羊草耐盐性的影响[D]. 长春:东北师范大学,2018.
[37]Aroca R,Bago A,Sutka M,et al. Expression analysis of the first arbuscular mycorrhizal fungi aquaporin described reveals concerted gene expression between salt-stressed and nonstressed mycelium[J]. Molecular Plant Microbe Interactions,2009,22(9):1169-1178.
[38]Chen J,Zhang H Q,Zhang X L,et al. Arbuscular mycorrhizal symbiosis alleviates salt stress in black locust through improved photosynthesis,water status,and K+/Na+homeostasis[J]. Frontiers in Plant Science,2017,8:1739.
[39]Porcel R,Aroca R,Azcon R,et al. Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution[J]. Mycorrhiza,2016,26(7):673-684.
[40]Jia T T,Wang J,Chang W,et al. Proteomics analysis of E. angustifolia seedlings inoculated with arbuscular mycorrhizal fungi under salt stress[J]. International Journal of Molecular Sciences,2019,20(3):788.
[41]张良,杨春雪. 盐碱胁迫对星星草-丛枝菌根真菌共生体酶活性及游离氨基酸的影响[J]. 东北林业大学学报,2018,46(11):91-96.
[42]王英男,彭晓媛,华晓雨,等. 氮素与盐碱胁迫互作对羊草-丛枝菌根共生体根系离子与有机酸含量的影响[J]. 水土保持研究,2019,26(2):118-125.
[43]王敏强,吴沛鸿,沈益康,等. 盐胁迫下接种丛枝苗根真菌对甜菊生长和氮磷吸收的影响[J]. 应用与环境生物学报,2018,24(5):960-966.
[44]吴强盛,柳威,翟华芬,等. 盐胁迫下AM真菌对枳实生苗生长和根系抗氧化酶的影响[J]. 江西农业大学学报,2010,32(4):759-762,782.
[45]Giri B,Mukerji K G. Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions:evidence for reduced sodium and improved magnesium uptake[J]. Mycorrhiza,2004,14(5):307-312.
[46]Martin F,Cliquet J B,Stewart G. Nitrogen acquisition and assimilation in mycorrhizal symbioses[M]//Plant nitrogen. Heidelberg:Springer Berlin Heidelberg,2001:147-166.
[47]Urcelay C,Vaieretti M V,Pérez M,et al. Effects of arbuscular mycorrhizal colonisation on shoot and root decomposition of different plant species and species mixtures[J]. Soil Biology and Biochemistry,2011,43(2):466-468.
[48]李军帅. 丛枝菌根真菌菌丝侵染特性与植物系统性关系的研究[D]. 兰州:兰州大学,2016.
[49]Ardestani M M,Frouz J. The arbuscular mycorrhizal fungus Rhizophagus intraradices and other microbial groups affect plant species in a copper-contaminated post-mining soil[J]. Journal of Trace Elements in Medicine and Biology,2020,62:126594.
[50]Chandrasekaran M,Kim K,Krishnamoorthy R,et al. Mycorrhizal symbiotic efficiency on C3 and C4 plants under salinity stress:a Meta-analysis[J]. Frontiers in Microbiology,2016,7:1246.
[51]李娜,韩晓增,尤孟阳,等. 土壤团聚体与微生物相互作用研究[J]. 生态环境学报,2013,22(9):1625-1632.
[52]李少朋,毕银丽,陈昢圳,等. 干旱胁迫下AM真菌对矿区土壤改良与玉米生长的影响[J]. 生态学报,2013,33(13):4181-4188.
[53]Guo N,Li L,Cui J Q,et al. Effects of Funneliformis mosseae on the fungal community in and soil properties of a continuously cropped soybean system[J]. Applied Soil Ecology,2021,164(1):103930.
[54]陈运雷,麦志通,罗静,等. 丛枝菌根真菌及其在石灰岩地区植物恢复中的应用[J]. 热带林业,2017,45(4):25-28.
[55]Lin J X,Wang Y N,Sun S N,et al. Effects of arbuscular mycorrhizal fungi on the growth,photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition[J]. Science of the Total Environment,2017,576:234-241.
[56]Frosi G,Barros V A,Oliveira M T,et al. Arbuscular mycorrhizal fungi and foliar phosphorus inorganic supply alleviate salt stress effects in physiological attributes,but only arbuscular mycorrhizal fungi increase biomass in woody species of a semiarid environment[J]. Tree Physiology,2017,38(1):25-36.
[57]Smith S E,Manjarrez M,Stonor R,et al. Indigenous arbuscular mycorrhizal (AM) fungi contribute to wheat phosphate uptake in a semi-arid field environment,shown by tracking with radioactive phosphorus[J]. Applied Soil Ecology,2015,96:68-74.
[58]柳晓磊,齐钊,闫臻,等. 复合微生物菌剂与氨基酸水溶肥组合施用对香蕉土壤理化性质及微生物群落的影响[J]. 中国土壤与肥料,2019(1):151-158.
[59]侯力峰.三种荒漠植物深色有隔内生真菌物种多样性和耐盐性研究[D]. 保定:河北大学,2020.
[60]叶林.丛枝菌根真菌对西瓜盐碱胁迫的缓解效应及其调控机理[D]. 杨凌:西北农林科技大学,2019.

相似文献/References:

[1]李少朋,毕银丽,彭星.接种丛枝菌根真菌对矿井水回灌玉米生长的影响[J].江苏农业科学,2016,44(05):112.
 Li Shaopeng,et al.Effects of inoculation with AMF on growth of maize after recharging with mining water[J].Jiangsu Agricultural Sciences,2016,44(4):112.
[2]王丽丽,杨谦.接种枯草芽孢杆菌和丛枝菌根真菌促进红三叶修复石油污染土壤[J].江苏农业科学,2016,44(05):526.
 Wang Lili,et al.Effect of inoculation with plant growth-promoting rhizobacteria (PGPR) of bacillus subtilis and arbuscular mycorrhizal fungi of Glomus geosporum on phytoremediation of Trifolium pratense to petroleum contaminated soil[J].Jiangsu Agricultural Sciences,2016,44(4):526.
[3]任禛,韩丽,张永福,等.不同丛枝菌根真菌对玉米生长生理的影响[J].江苏农业科学,2015,43(05):63.
 Ren Zhen,et al.Effect of different arbuscular mycorrhizal fungi on growth and physiology of maize[J].Jiangsu Agricultural Sciences,2015,43(4):63.
[4]赵飞,蔡晓布.不同海拔高度对藏北高寒草甸丛枝菌根真菌的影响[J].江苏农业科学,2015,43(04):344.
 Zhao fei,et al.Effect of different altitudes on arbuscular mycorrhizal fungi in northern Tibetan alpine meadow[J].Jiangsu Agricultural Sciences,2015,43(4):344.
[5]杜俊卿.接种丛枝菌根真菌对不同绿化植物根际微环境的影响[J].江苏农业科学,2017,45(18):149.
 Du Junqing.Effects of inoculating arbuscular mycorrhizal fungi on rhizosphere microenvironment of different greening plants[J].Jiangsu Agricultural Sciences,2017,45(4):149.
[6]王娜,陈飞,岳英男,等.松嫩盐碱草地2种优势丛枝菌根真菌对紫花苜蓿耐盐性的影响[J].江苏农业科学,2017,45(24):146.
 Wang Na,et al.Effects of two dominant AM fungi on salt tolerance of Medicago sativa in Songnen saline-alkaline grassland[J].Jiangsu Agricultural Sciences,2017,45(4):146.
[7]刘雪琴,韩锰,仝瑞建.纳米ZnO胁迫下丛枝菌根真菌根外菌丝对玉米生长及锌吸收的影响[J].江苏农业科学,2018,46(02):46.
 Liu Xueqin,et al.Effects of arbuscular mycorrhizal mycelium on maize growth and Zn uptake under ZnO nanoparticles stress[J].Jiangsu Agricultural Sciences,2018,46(4):46.
[8]刘薇,吕光辉,魏雪峰,等.AM真菌多样性与植物多样性耦合关系及其对水盐梯度的响应[J].江苏农业科学,2018,46(09):252.
 Liu Wei,et al.Coupling relationship between arbuscular mycorrhiza fungi diversity and plant diversity and its response to soil water and salinity gradient[J].Jiangsu Agricultural Sciences,2018,46(4):252.
[9]周昱.不同丛枝菌根真菌对云杉生长及根腐病的影响[J].江苏农业科学,2018,46(14):102.
 Zhou Yu.Effects of different arbuscular mycorrhizal fungi on growth and root rot of Picea asperata[J].Jiangsu Agricultural Sciences,2018,46(4):102.
[10]崔美香,卢彦琦,祁芳,等.丛枝菌根真菌对小麦生长发育及根茎部病害发生的影响[J].江苏农业科学,2018,46(16):81.
 Cui Meixiang,et al.Effects of arbuscular mycorrhizal fungi on growth and occurrence of root and stem diseases of wheat[J].Jiangsu Agricultural Sciences,2018,46(4):81.

备注/Memo

备注/Memo:
收稿日期:2022-04-08
基金项目:黑龙江省自然科学基金联合引导项目(编号:LH2021C076)。
作者简介:郭娜(1983—),女,辽宁昌图人,博士,副教授,硕士生导师,从事生物活性物质利用研究。E-mail:guona0329@126.com。
通信作者:接伟光,博士,教授,硕士生导师,从事微生物生理生态研究。E-mail:jieweiguang2007@126.com。
更新日期/Last Update: 2023-02-20