|本期目录/Table of Contents|

[1]董玉兵,董青君,纪力,等.硝化抑制剂对水稻秧苗生长及土壤养分变化的影响[J].江苏农业科学,2023,51(4):58-64.
 Dong Yubing,et al.Effect of nitrification inhibitor on rice seedling growth and soil nutrient changes[J].Jiangsu Agricultural Sciences,2023,51(4):58-64.
点击复制

硝化抑制剂对水稻秧苗生长及土壤养分变化的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第4期
页码:
58-64
栏目:
遗传育种与耕作栽培
出版日期:
2023-02-20

文章信息/Info

Title:
Effect of nitrification inhibitor on rice seedling growth and soil nutrient changes
作者:
董玉兵12 董青君1 纪力1 李卫红1 陈川1 庄春1 章安康1
1.江苏徐淮地区淮阴农业科学研究所,江苏淮安 223001; 2.南京农业大学资源与环境科学学院,江苏南京 210095
Author(s):
Dong Yubinget al
关键词:
水稻育秧硝化抑制剂秧苗素质养分变化双氰胺
Keywords:
-
分类号:
S511.06
DOI:
-
文献标志码:
A
摘要:
为解决传统育秧肥料后期供肥不足现象,通过2年的水稻育秧试验,探究不同用量硝化抑制剂(双氰胺,DCD)对水稻育秧肥料养分释放的影响。试验于2019年设3个处理:CK(不添加DCD)、NI1(添加0.05% DCD)、NI2(添加0.1% DCD);2020年额外增加1个处理:NI3(添加0.2% DCD)。结果表明,与CK相比,NI1处理和NI2处理总体提高了水稻育秧后期(28~35 d)秧苗素质(株高、叶龄、叶长、茎基宽);而NI3处理水稻秧苗素质则和CK无显著差异。添加硝化抑制剂可以明显提高水稻叶绿素含量(SPAD值),随着育秧时间延长和硝化抑制剂用量增加,对SPAD值提升效果越明显。添加硝化抑制剂会减少水稻育秧前期(10 d)土壤铵态氮(NH+4-N)含量,但是会增加育秧后期(25~35 d)土壤NH+4-N含量,并在育秧结束时显著提高土壤全氮含量。因此,添加硝化抑制剂在水稻育秧后期能够明显增加土壤氮素残留,低用量硝化抑制剂在一定程度上还可以提高水稻秧苗素质。但是,在实际应用中需要注意高用量硝化抑制剂对水稻秧苗素质的负面效果。
Abstract:
-

参考文献/References:

[1]董玉兵,庄春,纪力,等. 机插水稻漂浮育秧对不同水体水质的影响[J]. 江苏农业科学,2020,48(16):96-99.
[2]纪力,董玉兵,钟平,等. 育苗基质对漂浮育秧机插水稻南粳9108秧苗素质的影响[J]. 浙江农业科学,2020,61(4):630-632,634.
[3]张桥,向开宏,孙永健,等. 不同育秧方式下播种量和插秧机具对水稻产量及群体质量的影响[J]. 核农学报,2020,34(11):2595-2606.
[4]陈川,张山泉,庄春,等. 水稻机插旱育秧与水育秧幼苗素质的比较研究[J]. 江苏农业科学,2003,31(6):27-29.
[5]邵文奇,纪力,钟平,等. 不同施肥时期对水稻机插秧苗素质的影响[J]. 江苏农业科学,2018,46(5):81-83.
[6]刘玖业. 不同育秧方式对水稻机插秧苗素质的影响[J]. 现代农业科技,2020(9):16-17.
[7]庄春,纪力,邵文奇,等. 印刷播种大壮苗育秧技术下水稻机插适宜密度与效果研究[J]. 江苏农业科学,2019,47(7):69-72.
[8]鲍士旦. 土壤农化分析[M]. 3版.北京:中国农业出版社,2000.
[9]Fan C H,Li B,Xiong Z Q. Nitrification inhibitors mitigated reactive gaseous nitrogen intensity in intensive vegetable soils from China[J]. The Science of the Total Environment,2018,612:480-489.
[10]Hu Y,Schraml M,Tucher S,et al. Influence of nitrification inhibitors on yields of arable crops:a meta-analysis of recent studies in Germany[J]. International Journal of Plant Production. 2013,8:33-50.
[11]Fan C H,Zhang W,Chen X,et al. Residual effects of four-year amendments of organic material on N2O production driven by ammonia-oxidizing Archaea and bacteria in a tropical vegetable soil[J]. Science of the Total Environment,2021,781:146746.
[12]油伦成,李东坡,崔磊,等. 不同硝化抑制剂组合对铵态氮在黑土和褐土中转化的影响[J]. 植物营养与肥料学报,2019,25(12):2113-2121.
[13]董玉兵,吴震,李博,等. 追施生物炭对稻麦轮作中麦季氨挥发和氮肥利用率的影响[J]. 植物营养与肥料学报,2017,23(5):1258-1267.
[14]Abalos D,Jeffery S,Sanz-Cobena A,et al. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency[J]. Agriculture,Ecosystems & Environment,2014,189:136-144.
[15]Li B,Fan C H,Xiong Z Q,et al. The combined effects of nitrification inhibitor and biochar incorporation on yield-scaled N2O emissions from an intensively managed vegetable field in southeastern China[J]. Biogeosciences,2015,12:2003-2017.
[16]Macadam X M B,Prado A D,Merino P,et al. Dicyandiamide and 3,4-dimethyl pyrazole phosphate decrease N2O emissions from grassland but dicyandiamide produces deleterious effects in clover[J]. Journal of Plant Physiology,2003,160(12):1517-1523.
[17]郝胜磊,蔡廷瑶,冯小杰,等. 新型肥料对全球三大粮食作物产量和土壤生物学活性影响的Meta分析[J]. 植物营养与肥料学报,2021,27(9):1496-1505.
[18]Dawar K,Rahman U,Alam S S,et al. Nitrification inhibitor and plant growth regulators improve wheat yield and nitrogen use efficiency[J]. Journal of Plant Growth Regulation,2022,41(1):216-226.
[19]Zhang M,Fan C H,Li Q L,et al. A 2-yr field assessment of the effects of chemical and biological nitrification inhibitors on nitrous oxide emissions and nitrogen use efficiency in an intensively managed vegetable cropping system[J]. Agriculture,Ecosystems & Environment,2015,201:43-50.
[20]Wu D,Zhang Y X,Dong G,et al. The importance of ammonia volatilization in estimating the efficacy of nitrification inhibitors to reduce N2O emissions:a global meta-analysis[J]. Environmental Pollution,2021,271(2):116365.
[21]Dong Y B,Wu Z,Zhang X,et al. Dynamic responses of ammonia volatilization to different rates of fresh and field-aged biochar in a rice-wheat rotation system[J]. Field Crops Research,2019,241:107568.

相似文献/References:

[1]臧祎娜,周晓丽,解东友,等.硝化抑制剂DCD和NP对温室菜田土壤氮素转化及N2 O、CO2排放的影响[J].江苏农业科学,2018,46(20):333.
 Zang Yina,et al.Effects of nitrification inhibitors DCD and NP on vegetable soil nitrogen transformation and N2O and CO2 emissions in greenhouse[J].Jiangsu Agricultural Sciences,2018,46(4):333.
[2]王长军,李凤霞,谭松伟,等.硝化/脲酶抑制剂对宁夏灌淤土土壤氮含量及其转化的影响[J].江苏农业科学,2019,47(21):285.
 Wang Zhangjun,et al.Effects of nitrification-urease inhibitor on soil nitrogen content and transformation in irrigation-silted soil of Ningxia area[J].Jiangsu Agricultural Sciences,2019,47(4):285.
[3]胡丹,李培楚,康丽霞,等.抑制剂包膜尿素对石灰性土壤硝化及相关酶活性的影响[J].江苏农业科学,2023,51(15):231.
 Hu Dan,et al.Effects of inhibitor coated urea on nitrification and related enzyme activities in calcareous soils[J].Jiangsu Agricultural Sciences,2023,51(4):231.

备注/Memo

备注/Memo:
收稿日期:2022-05-17
基金项目:江苏省重点研发(现代农业) 重点及面上项目(编号:BE2019334);淮安市农业科学研究院科研发展基金(编号:HNY201914、HNY202015)。
作者简介:董玉兵(1992—),男,山东济宁人,博士研究生,助理研究员,主要从事土壤肥料方面的研究。E-mali:dongyubing178@163.com。
通信作者:陈川,研究员,主要从事作物栽培和土壤肥料方面的研究。E-mail:chenchuan3174@sina.com。
更新日期/Last Update: 2023-02-20