|本期目录/Table of Contents|

[1]杨妮,邓树林,樊艳红,等.叶绿素荧光遥感反演及其农业监测应用研究进展[J].江苏农业科学,2023,51(14):1-13.
 Yang Ni,et al.Research progress of chlorophyll fluorescence retrieval by remote sensing and its application in agricultural monitoring[J].Jiangsu Agricultural Sciences,2023,51(14):1-13.
点击复制

叶绿素荧光遥感反演及其农业监测应用研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第14期
页码:
1-13
栏目:
专论与综述
出版日期:
2023-07-20

文章信息/Info

Title:
Research progress of chlorophyll fluorescence retrieval by remote sensing and its application in agricultural monitoring
作者:
杨妮12邓树林3樊艳红2谢国雪4
1.中国地质大学(武汉)地理与信息工程学院,湖北武汉 430074; 2.广西财经学院管理科学与工程学院,广西南宁 530003;3.南宁师范大学地理科学与规划学院,广西南宁 530001; 4.广西农业科学院农业科技信息研究所,广西南宁 530003
Author(s):
Yang Niet al
关键词:
日光诱导叶绿素荧光(SIF)农业环境胁迫产量估算遥感监测
Keywords:
-
分类号:
S127
DOI:
-
文献标志码:
A
摘要:
近年快速发展起来的日光诱导叶绿素荧光(solar-induced chlorophyll fluorescence,SIF)可直接量化植被的实际光合作用,为实现大面积农作物及时有效监测提供新的手段,在农业监测领域中具有非常重要的应用价值和广阔的应用前景。因此,本文分析近年来卫星SIF遥感的发展趋势,从理论上解释遥感信息中提取SIF的难度,总结叶绿素荧光远程检测原理及多重影响因素;对比分析基于辐射传输方程的算法、简化的物理模型算法和数据驱动算法3种反演方法的优缺点,系统梳理卫星SIF产品及其反演方法;从响应敏感性和监测机理方面探讨SIF遥感在监测作物环境胁迫和生产力与产量评估应用中的主要方法与最新技术。由于当前用于SIF反演的卫星传感器均不是专门进行荧光探测,SIF产品具有空间不连续、时空分辨率较低等缺点,在卫星SIF数据反演方法、作物胁迫监测、SIF与GPP机理联系、SIF数据同化等方面仍有较多待解决的问题。今后需继续深入研究SIF遥感的作物环境胁迫响应机理与生产力估算方法,进一步集成荧光、热红外、微波等多源遥感,进而大幅度提高农业监测能力,以保障国家农业安全生产,为SIF遥感深入应用提供一定的理论参考。
Abstract:
-

参考文献/References:

[1]Vogel E,Donat M G,Alexander L V,et al. The effects of climate extremes on global agricultural yields[J]. Environmental Research Letters,2019,14(5):1-12
[2]Zhang L,Xiao J F,Li J,et al. The 2010 spring drought reduced primary productivity in southwestern China[J]. Environmental Research Letters,2012,7(4):1-10.
[3]Liu W T,Kogan F N. Monitoring regional drought using the Vegetation Condition Index[J]. International Journal of Remote Sensing,1996,17(14):2761-2782.
[4]Huete A,Didan K,Miura T,et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J]. Remote Sensing of Environment,2002,83(1/2):195-213.
[5]Ji L,Peters A J.Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices[J]. Remote Sensing of Environment,2003,87(1):85-98.
[6]Xu L,Samanta A,Costa M H,et al. Widespread decline in greenness of Amazonian vegetation due to the 2010 drought[J]. Geophysical Research Letters,2011,38(7):L07402.
[7]Tan Z Q,Tao H,Jiang J H,et al. Influences of climate extremes on NDVI (normalized difference vegetation index) in the Poyang Lake basin,China[J]. Wetlands,2015,35(6):1033-1042.
[8]Song L,Guanter L,Guan K Y,et al. Satellite sun-induced chlorophyll fluorescence detects early response of winter wheat to heat stress in the Indian Indo-Gangetic Plains[J]. Global Change Biology,2018,24(9):4023-4037.
[9]Liu L Z,Yang X,Zhou H K,et al. Evaluating the utility of solar-induced chlorophyll fluorescence for drought monitoring by comparison with NDVI derived from wheat canopy[J]. Science of the Total Environment,2018,625:1208-1217.
[10]Guanter L,Zhang Y G,Jung M,et al. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence[J]. Proceedings of the National Academy of Sciences of the United States of America,2014,111(14):E1327-E1333.
[11]Sun Y,Fu R,Dickinson R,et al. Drought onset mechanisms revealed by satellite solar-induced chlorophyll fluorescence:Insights from two contrasting extreme events[J]. Journal of Geophysical Research(Biogeosciences),2015,120(11):2427-2440.
[12]章钊颖,王松寒,邱博,等. 日光诱导叶绿素荧光遥感反演及碳循环应用进展[J]. 遥感学报,2019,23(1):37-52.
[13]张立福,王思恒,黄长平. 太阳诱导叶绿素荧光的卫星遥感反演方法[J]. 遥感学报,2018,22(1):1-12.
[14]Joiner J,Yoshida Y,Vasilkov A P,et al. First observations of global and seasonal terrestrial chlorophyll fluorescence from space[J]. Biogeosciences,2011,8(3):637-651.
[15]Frankenberg C,ODell C,Berry J,et al. Prospects for chlorophyll fluorescence remote sensing from the orbiting carbon observatory-2[J]. Remote Sensing of Environment,2014,147:1-12.
[16]Joiner J,Yoshida Y,Vasilkov A P,et al. Filling-in of near-infrared solar lines by terrestrial fluorescence and other geophysical effects:simulations and space-based observations from SCIAMACHY and GOSAT[J]. Atmospheric Measurement Techniques,2012,5(4):809-829.
[17]Guanter L,Aben I,Tol P,et al. Potential of the TROPOspheric Monitoring Instrument (TROPOMI) on board the Sentinel-5 Precursor for the monitoring of terrestrial chlorophyll fluorescence[J]. Atmospheric Measurement Techniques,2015,8(3):1337-1352.
[18]Khler P,Guanter L,Joiner J. A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data[J]. Atmospheric Measurement Techniques,2015,8(6):2589-2608.
[19]Brewster D. On the colours of natural bodies[J]. Earth and Environmental Science Transactions of The Royal Society of Edinburgh,1834,12(2):538-545.
[20]Meroni M,Rossini M,Guanter L,et al. Remote sensing of solar-induced chlorophyll fluorescence:review of methods and applications[J]. Remote Sensing of Environment,2009,113(10):2037-2051.
[21]Mohammed G H,Colombo R,Middleton E M,et al. Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation:50 years of progress[J]. Remote Sensing of Environment,2019,231:111177.
[22]Krause G H,Weis E. Chlorophyll fluorescence and photosynthesis:the basics[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1991,42:313-349.
[23]Papageorgiou G. 6-Chlorophyll fluorescence:an intrinsic probe of photosynthesis[M]//Govindjee. Bioenergetics of photosynthesis. New York:Academic Press,1975:319-371.
[24]Papageorgiou G C. Photosystem Ⅱ fluorescence:slow changes—scaling from the past[J]. Journal of Photochemistry and Photobiology (B:Biology),2011,104(1/2):258-270.
[25]刘雷震,武建军,周洪奎,等. 叶绿素荧光及其在水分胁迫监测中的研究进展[J]. 光谱学与光谱分析,2017,37(9):2780-2787.
[26]Frankenberg C,Khler P,Magney T S,et al. The chlorophyll fluorescence imaging spectrometer (CFIS),mapping far red fluorescence from aircraft[J]. Remote Sensing of Environment,2018,217:523-536.
[27]Pfündel E. Estimating the contribution of photosystem Ⅰ to total leaf chlorophyll fluorescence[J]. Photosynthesis Research,1998,56(2):185-195.
[28]Schlau-Cohen G S,Berry J. Photosynthetic fluorescence,from molecule to planet[J]. Physics Today,2015,68(9):66-67.
[29]Sun Y,Frankenberg C,Wood J D,et al. OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence[J]. Science,2017,358(6360):eaam5747.
[30]Cogliati S,Rossini M,Julitta T,et al. Continuous and long-term measurements of reflectance and sun-induced chlorophyll fluorescence by using novel automated field spectroscopy systems[J]. Remote Sensing of Environment,2015,164:270-281.
[31]Damm A,Guanter L,Laurent V C E,et al. FLD-based retrieval of sun-induced chlorophyll fluorescence from medium spectral resolution airborne spectroscopy data[J]. Remote Sensing of Environment,2014,147:256-266.
[32]彭金龙,李萌,褚荣浩,等. 日光诱导叶绿素荧光反演及其在植被环境胁迫监测中的研究进展[J]. 江苏农业科学,2021,49(24):29-40.
[33]Zhang Y,Joiner J,Alemohammad S H,et al. A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks[J]. Biogeosciences,2018,15(19):5779-5800.
[34]Chen X J,Mo X G,Zhang Y C,et al. Drought detection and assessment with solar-induced chlorophyll fluorescence in summer maize growth period over North China Plain[J]. Ecological Indicators,2019,104:347-356.
[35]Adams W W,Demmig-Adams B. Carotenoid composition and down regulation of photosystem Ⅱ in three conifer species during the winter[J]. Physiologia Plantarum,1994,92(3):451-458.
[36]Meroni M,Colombo R. Leaf level detection of solar induced chlorophyll fluorescence by means of a subnanometer resolution spectroradiometer[J]. Remote Sensing of Environment,2006,103:438-448.
[37]纪梦豪,唐伯惠,李召良. 太阳诱导叶绿素荧光的卫星遥感反演方法研究进展[J]. 遥感技术与应用,2019,34(3):455-466.
[38]张永江,刘良云,侯名语,等. 植物叶绿素荧光遥感研究进展[J]. 遥感学报,2009,13(5):963-978.
[39]王雅楠,韦瑾,汤旭光,等. 应用叶绿素荧光估算植被总初级生产力研究进展[J]. 遥感技术与应用,2020,35(5):975-989.
[40]Drusch M,Moreno J,del Bello U,et al. The fluorescence explorer mission concept-ESA’s earth explorer 8[J]. IEEE Transactions on Geoscience and Remote Sensing,2017,55(3):1273-1284.
[41]Damm A,Guanter L,Paul-Limoges E,et al. Far-red sun-induced chlorophyll fluorescence shows ecosystem-specific relationships to gross primary production:an assessment based on observational and modeling approaches[J]. Remote Sensing of Environment,2015,166:91-105.
[42]Guanter L,Alonso L,Gómez-Chova L,et al. Developments for vegetation fluorescence retrieval from spaceborne high-resolution spectrometry in the O2-A and O2-B absorption bands[J]. Journal of Geophysical Research,2010,115(D19):D19303.
[43]Guanter L,Alonso L,Gómez-Chova L,et al. Estimation of solar-induced vegetation fluorescence from space measurements[J]. Geophysical Research Letters,2007,34(8):L08401.
[44]刘新杰,刘良云. 叶绿素荧光的GOSAT卫星遥感反演[J]. 遥感学报,2013,17(6):1518-1532.
[45]Guanter L,Frankenberg C,Dudhia A,et al. Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements[J]. Remote Sensing of Environment,2012,121:236-251.
[46]Joiner J,Yoshida Y,Guanter L,et al. New methods for the retrieval of chlorophyll red fluorescence from hyperspectral satellite instruments:simulations and application to GOME-2 and SCIAMACHY[J]. Atmospheric Measurement Techniques,2016,9(8):3939-3967.
[47]Joiner J,Guanter L,Lindstrot R,et al. Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements:methodology,simulations,and application to GOME-2[J]. Atmospheric Measurement Techniques,2013,6(10):2803-2823.
[48]Sanders A,Verstraeten W,Kooreman M,et al. Spaceborne sun-induced vegetation fluorescence time series from 2007 to 2015 evaluated with Australian flux tower measurements[J]. Remote Sensing,2016,8(11):895.
[49]Du S S,Liu L Y,Liu X J,et al. Retrieval of global terrestrial solar-induced chlorophyll fluorescence from TanSat satellite[J]. Science Bulletin,2018,63(22):1502-1512.
[50]Verma M,Schimel D,Evans B,et al. Effect of environmental conditions on the relationship between solar-induced fluorescence and gross primary productivity at an OzFlux grassland site[J]. Journal of Geophysical Research(Biogeosciences),2017,122(3):716-733.
[51]Smith W K,Biederman J A,Scott R L,et al. Chlorophyll fluorescence better captures seasonal and interannual gross primary productivity dynamics across dryland ecosystems of southwestern North America[J]. Geophysical Research Letters,2018,45(2):748-757.
[52]Li X,Xiao J F,He B B,et al. Solar-induced chlorophyll fluorescence is strongly correlated with terrestrial photosynthesis for a wide variety of biomes:first global analysis based on OCO-2 and flux tower observations[J]. Global Change Biology,2018,24(9):3990-4008.
[53]Khler P,Guanter L,Kobayashi H,et al. Assessing the potential of sun-induced fluorescence and the canopy scattering coefficient to track large-scale vegetation dynamics in Amazon forests[J]. Remote Sensing of Environment,2018,204:769-785.
[54]Zhang Y G,Guanter L,Berry J A,et al. Estimation of vegetation photosynthetic capacity from space-based measurements of chlorophyll fluorescence for terrestrial biosphere models[J]. Global Change Biology,2014,20(12):3727-3742.
[55]Zhang Y G,Guanter L,Joiner J,et al. Spatially-explicit monitoring of crop photosynthetic capacity through the use of space-based chlorophyll fluorescence data[J]. Remote Sensing of Environment,2018,210:362-374.
[56]Zhang Y G,Guanter L,Berry J A,et al. Can we retrieve vegetation photosynthetic capacity paramter from solar-induced fluorescence?[C]//2016 IEEE International Geoscience and Remote Sensing Symposium.Beijing,2016:1711-1713.
[57]Zhang Y G,Guanter L,Berry J A,et al. Model-based analysis of the relationship between sun-induced chlorophyll fluorescence and gross primary production for remote sensing applications[J]. Remote Sensing of Environment,2016,187:145-155.
[58]Xiao J F,Fisher J B,Hashimoto H,et al. Emerging satellite observations for diurnal cycling of ecosystem processes[J]. Nature Plants,2021,7(7):877-887.
[59]Eldering A,Taylor T E,ODell C W,et al. The OCO-3 mission:measurement objectives and expected performance based on 1 year of simulated data[J]. Atmospheric Measurement Techniques,2019,12(4):2341-2370.
[60]Khler P,Behrenfeld M J,Landgraf J,et al. Global retrievals of solar-induced chlorophyll fluorescence at red wavelengths with TROPOMI[J/OL]. Geophysical Research Letters,2020,47(15).(2020-07-31)[2022-05-10]. https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2020GL087541.
[61]Khler P,Frankenberg C,Magney T S,et al. Global retrievals of solar-induced chlorophyll fluorescence with TROPOMI:first results and intersensor comparison to OCO-2[J]. Geophysical Research Letters,2018,45(19):10456-10463.
[62]Duveiller G,Cescatti A. Spatially downscaling sun-induced chlorophyll fluorescence leads to an improved temporal correlation with gross primary productivity[J]. Remote Sensing of Environment,2016,182:72-89.
[63]Li X,Xiao J F. A global,0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2,MODIS,and reanalysis data[J]. Remote Sensing,2019,11(5):517.
[64]Ma Y,Liu L Y,Liu X J,et al. An improved downscaled sun-induced chlorophyll fluorescence (DSIF) product of GOME-2 dataset[J]. European Journal of Remote Sensing,2022,55:168-180.
[65]Gentine P,Alemohammad S H. Reconstructed solar-induced fluorescence:a machine learning vegetation product based on MODIS surface reflectance to reproduce GOME-2 solar-induced fluorescence[J]. Geophysical Research Letters,2018,45(7):3136-3146.
[66]Yu L,Wen J,Chang C Y,et al. High-resolution global contiguous SIF of OCO-2[J]. Geophysical Research Letters,2019,46(3):1449-1458.
[67]郭铌. 植被指数及其研究进展[J]. 干旱气象,2003(4):71-75.
[68]Di L P,Rundquist D C,Han L H. Modelling relationships between NDVI and precipitation during vegetative growth cycles[J]. International Journal of Remote Sensing,1994,15(10):2121-2136.
[69]冯建灿,胡秀丽,苏金乐,等. 保水剂对干旱胁迫下刺槐叶绿素a荧光动力学参数的影响[J]. 西北植物学报,2002,22(5):1144-1149.
[70]Lee J E,Frankenberg C,van der Tol C,et al. Forest productivity and water stress in Amazonia:observations from GOSAT chlorophyll fluorescence[J]. Proceedings of the Royal Society (B:Biological Sciences),2013,280(1761):171.
[71]Sun Y,Frankenberg C,Jung M,et al. Overview of solar-induced chlorophyll fluorescence (SIF) from the orbiting carbon observatory-2:retrieval,cross-mission comparison,and global monitoring for GPP[J]. Remote Sensing of Environment,2018,209:808-823.
[72]竞霞,白宗璠,张腾,等. 3FLD和反射率荧光指数估测小麦条锈病病情严重度的对比分析[J]. 中国农机化学报,2019,40(11):136-142.
[73]陈思媛,竞霞,董莹莹,等. 基于日光诱导叶绿素荧光与反射率光谱的小麦条锈病探测研究[J]. 遥感技术与应用,2019,34(3):511-520.
[74]赵叶,竞霞,黄文江,等. 日光诱导叶绿素荧光与反射率光谱数据监测小麦条锈病严重度的对比分析[J]. 光谱学与光谱分析,2019,39(9):2739-2745.
[75]Jing X,Zou Q,Bai Z F,et al. Research progress of crop diseases monitoring based on reflectance and chlorophyll fluorescence data[J]. Acta Agronomica Sinica,2021,47(11):2067-2079.
[76]Zhang Y,Xiao X M,Wolf S,et al. Spatio-temporal convergence of maximum daily light-use efficiency based on radiation absorption by canopy chlorophyll[J]. Geophysical Research Letters,2018,45(8):3508-3519.
[77]Yang P Q,van der Tol C. Linking canopy scattering of far-red sun-induced chlorophyll fluorescence with reflectance[J]. Remote Sensing of Environment,2018,209:456-467.
[78]van der Tol C,Berry J A,Campbell P K E,et al. Models of fluorescence and photosynthesis for interpreting measurements of solar-induced chlorophyll fluorescence[J]. Journal of Geophysical Research(Biogeosciences),2014,119(12):2312-2327.
[79]Guan K Y,Berry J A,Zhang Y G,et al. Improving the monitoring of crop productivity using spaceborne solar-induced fluorescence[J]. Global Change Biology,2016,22(2):716-726.
[80]Genty B,Briantais J M,Baker N R.The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochimica et Biophysica Acta (General Subjects),1989,990(1):87-92.
[81]He M H,Shishov V,Kaparova N,et al. Process-based modeling of tree-ring formation and its relationships with climate on the Tibetan Plateau[J]. Dendrochronologia,2017,42:31-41.
[82]Porcar-Castell A,Tyystjrvi E,Atherton J,et al. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications:mechanisms and challenges[J]. Journal of Experimental Botany,2014,65(15):4065-4095.
[83]Mathobo R,Marais D,Steyn J M. The effect of drought stress on yield,leaf gaseous exchange and chlorophyll fluorescence of dry beans (Phaseolus vulgaris L.)[J]. Agricultural Water Management,2017,180:118-125.
[84]Maxwell K,Johnson G N. Chlorophyll fluorescence-a practical guide[J]. Journal of Experimental Botany,2000,51(345):659-668.
[85]Baker N R. Chlorophyll fluorescence:a probe of photosynthesis in vivo[J]. Annual Review of Plant Biology,2008,59:89-113.
[86]Yoshida Y,Joiner J,Tucker C,et al. The 2010 Russian drought impact on satellite measurements of solar-induced chlorophyll fluorescence:insights from modeling and comparisons with parameters derived from satellite reflectances[J]. Remote Sensing of Environment,2015,166:163-177.
[87]Liu L Y,Guan L L,Liu X J. Directly estimating diurnal changes in GPP for C3 and C4 crops using far-red sun-induced chlorophyll fluorescence[J]. Agricultural and Forest Meteorology,2017,232:1-9.
[88]Guan K Y,Wu J,Kimball J S,et al. The shared and unique values of optical,fluorescence,thermal and microwave satellite data for estimating large-scale crop yields[J]. Remote Sensing of Environment,2017,199:333-349.
[89]Joiner J,Yoshida Y,Zhang Y,et al. Estimation of terrestrial global gross primary production (GPP) with satellite data-driven models and eddy covariance flux data[J]. Remote Sensing,2018,10(9):1346.
[90]He L Y,Magney T,Dutta D,et al. From the ground to space:using solar-induced chlorophyll fluorescence to estimate crop productivity[J/OL]. Geophysical Research Letters,2020,47(7).(2020-05-20)[2022-05-10]. https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2020GL087474.
[91]Yang P Q,van der Tol C,Campbell P K E,et al. Unraveling the physical and physiological basis for the solar-induced chlorophyll fluorescence and photosynthesis relationship using continuous leaf and canopy measurements of a corn crop[J]. Biogeosciences,2021,18(2):441-465.
[92]Shen Q,Lin J Y,Yang J H,et al. Exploring the potential of spatially downscaled solar-induced chlorophyll fluorescence to monitor drought effects on gross primary production in winter wheat[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2022,15:2012-2022.
[93]Wei J,Tang X G,Gu Q,et al. Using solar-induced chlorophyll fluorescence observed by OCO-2 to predict autumn crop production in China[J]. Remote Sensing,2019,11(14):1715.
[94]Gao Y,Wang S H,Guan K Y,et al. The ability of sun-induced chlorophyll fluorescence from OCO-2 and MODIS-EVI to monitor spatial variations of soybean and maize yields in the Midwestern USA[J]. Remote Sensing,2020,12(7):1111.
[95]Zhang L L,Zhang Z,Luo Y C,et al. Combining optical,fluorescence,thermal satellite,and environmental data to predict County-level maize yield in China using machine learning approaches[J]. Remote Sensing,2019,12(1):21.
[96]Cao J,Zhang Z,Tao F L,et al. Integrating multi-source data for rice yield prediction across China using machine learning and deep learning approaches[J]. Agricultural and Forest Meteorology,2021,297:108275.
[97]王来刚,郑国清,郭燕,等. 融合多源时空数据的冬小麦产量预测模型研究[J]. 农业机械学报,2022,53(1):198-204,458.
[98]Hao Z C,Singh V P.Drought characterization from a multivariate perspective:a review[J]. Journal of Hydrology,2015,527:668-678.
[99]Hao Z C,Hao F H,Singh V P,et al. An integrated package for drought monitoring,prediction and analysis to aid drought modeling and assessment[J]. Environmental Modelling & Software,2017,91:199-209.

相似文献/References:

[1]宋雯雯,陆学文,周华.国库集中支付制度下农业科研经费管理存在的问题及对策[J].江苏农业科学,2014,42(11):485.
 Song Wenwen,et al(8).Problems and countermeasures for management of agricultural scientific research fund under treasury centralization payment system[J].Jiangsu Agricultural Sciences,2014,42(14):485.
[2]汤爱萍,万金保,李爽,等.环境系统工程在农业非点源污染控制中的应用[J].江苏农业科学,2013,41(06):353.
 Tang Aiping,et al.Application of environment system engineering in controlling agricultural non-point source pollution[J].Jiangsu Agricultural Sciences,2013,41(14):353.
[3]李万青.中国农业国际竞争力的优势、劣势及提升路径——基于金砖国家农业基本状况的比较[J].江苏农业科学,2014,42(09):437.
 Li Wanqing.Strength, weakness and enhance path of Chinas agricultural international competitiveness—Based on comparative study on basic situation of agriculture in BRIC countries[J].Jiangsu Agricultural Sciences,2014,42(14):437.
[4]鄢姣,赵军.中国农业风险评估——基于H-P滤波分析与非平衡面板数据的实证研究[J].江苏农业科学,2014,42(09):409.
 Yan Jiao,et al.Risk assessment of Chinas agriculture-Based on empirical study of H-P filter and the unbalanced panel data[J].Jiangsu Agricultural Sciences,2014,42(14):409.
[5]张晓莉,逄春蕾,尹作华.基于修正钻石模型的新疆生产建设兵团农业竞争力研究——与黑龙江农垦的比较[J].江苏农业科学,2014,42(09):413.
 Zhang Xiaoli,et al.Study on agricultural competitiveness of Xinjiang Production and Construction Corps based on modified diamond model—Comparative analysis with Heilongjiang land reclamation[J].Jiangsu Agricultural Sciences,2014,42(14):413.
[6]鲍荣龙.设施草莓的安全高效栽培集成技术及产业化趋势[J].江苏农业科学,2013,41(08):166.
 Bao Ronglong.Safe and efficient cultivation integrated technology and industrialization trends for strawberry in greenhouse[J].Jiangsu Agricultural Sciences,2013,41(14):166.
[7]何榕,盖玉芳,焦隽,等.江苏省扬州市发展农业适度规模经营的探索[J].江苏农业科学,2016,44(05):550.
 He Rong,et al.Exploration of appropriate agriculture scale management development in Yangzhou,Jiangsu Province[J].Jiangsu Agricultural Sciences,2016,44(14):550.
[8]潘薇,练霞.面向农业领域的可重用学习对象模型[J].江苏农业科学,2014,42(03):357.
 Pan Wei,et al.A reusable learning object model for agriculture domain[J].Jiangsu Agricultural Sciences,2014,42(14):357.
[9]李国锋,张振华,邹轶.农业生产标准化存在的问题及对策建议[J].江苏农业科学,2016,44(02):468.
 Li Guofeng,et al.Problems and countermeasures for standardization of agricultural production[J].Jiangsu Agricultural Sciences,2016,44(14):468.
[10]倪圣亚,薛民琪,陆胜龙,等.盐城市农业面源污染现状与防治对策[J].江苏农业科学,2015,43(12):413.
 Ni Shengya,et al.Present situation and countermeasures of agricultural non-point source pollution in Yancheng City[J].Jiangsu Agricultural Sciences,2015,43(14):413.

备注/Memo

备注/Memo:
收稿日期:2022-10-09
基金项目:国家自然科学基金(编号:42061071);广西科技基地和人才专项(编号:桂科AD20297027);广西自然科学基金(编号:2021GXNSFBA220061);广西高校中青年教师科研基础能力提升项目(编号:2021KY0397);统计学广西一流学科建设项目(编号:桂教科研〔2022〕1号)。
作者简介:杨妮(1989—),女,广西桂平人,博士研究生,副教授,研究方向为GIS与遥感应用、空间信息技术应用与服务。E-mail:yangniyyy@163.com。
通信作者:邓树林,博士,助理研究员,研究方向为资源环境遥感。E-mail:dengshulin12531@163.com。
更新日期/Last Update: 2023-07-20