|本期目录/Table of Contents|

[1]姚卫举,牟晓杰,万斯昂,等.不同土地利用方式土壤碳、氮、磷、硫含量及其生态化学计量特征[J].江苏农业科学,2023,51(17):231-239.
 Yao Weiju,et al.Soil carbon,nitrogen,phosphorus and sulfur contents and their eco-stoichiometric characteristics under different land use patterns[JY。]Yao Weiju,et al(231)[J].Jiangsu Agricultural Sciences,2023,51(17):231-239.
点击复制

不同土地利用方式土壤碳、氮、磷、硫含量及其生态化学计量特征(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第17期
页码:
231-239
栏目:
资源与环境
出版日期:
2023-09-05

文章信息/Info

Title:
Soil carbon,nitrogen,phosphorus and sulfur contents and their eco-stoichiometric characteristics under different land use patterns[JY。]Yao Weiju,et al(231)
作者:
姚卫举12牟晓杰2万斯昂23徐惠风1王苗苗12赵泽宇12
1.吉林农业大学农学院,吉林长春 130118; 2.中国科学院东北地理与农业生态研究所湿地生态与环境重点实验室,吉林长春 130102;3.海南师范大学地理与环境科学学院,海南海口 571158
Author(s):
Yao Weijuet al
关键词:
碳氮磷硫生态化学计量学滨海湿地土地利用
Keywords:
-
分类号:
S181
DOI:
-
文献标志码:
A
摘要:
为研究不同土地利用方式对土壤碳(C)、氮(N)、磷(P)、硫(S)含量及其生态化学计量学特征的影响,采集辽河三角洲碱蓬湿地、芦苇湿地、香蒲湿地、油田区芦苇湿地、水稻田、玉米地、榆树林地7种不同类型土壤,测定C、N、P、S含量及其相关理化性质。结果表明,不同土地利用方式对土壤有机碳(SOC)、全氮(TN)、全磷(TP)含量均具有显著影响(P<0.05),但对TS含量多数未产生显著影响(只有碱蓬湿地和榆树林地存在显著差异)。4种湿地类型(芦苇湿地、香蒲湿地、碱蓬湿地和水稻田)土壤SOC含量显著高于玉米地和榆树林地。芦苇湿地、香蒲湿地、水稻田、玉米地的TN含量较高,显著高于其他土壤类型,土壤TN含量与pH值呈显著负相关关系,而与Eh呈显著正相关关系。水稻田TP含量最高,芦苇湿地次之,榆树林地最低。不同土地利用方式对土壤DOC、硝态氮、铵态氮和硫酸盐含量也具有显著影响。芦苇湿地、香蒲湿地、水稻田的DOC 含量显著高于其他土地利用类型;玉米地硝态氮含量显著高于其他区域,而水稻田铵态氮含量显著高于其他区域(P<0.05),这主要与土壤硝化作用与反硝化作用有关;受潮汐作用影响碱蓬湿地硫酸盐含量最高,其他区域无显著差异(P<0.05)。碱蓬湿地、油田区芦苇湿地和水稻田土壤的C ∶N>20,其他区域均<20,表明前3种土壤硝化作用受有机碳可利用性控制,其他区域则受铵态氮可利用性控制;除油田区芦苇湿地以外其他区域土壤的C ∶P均小于200,表明土壤磷活性较高,有利于植物生长;研究区N ∶P均值为3.5,远低于全国N ∶P平均值(8.0),因此N是研究区土壤的限制性营养元素;油田区芦苇湿地C ∶S大于400,说明该区矿物态硫发生净固定,水稻田土壤C ∶S介于200~400之间,表明土壤S既不用来合成有机硫也不从有机硫中释放,而其他区域土壤C ∶S均小于200,表明这些区域目前基本处于土壤有机硫矿化过程中的净释放阶段,S不是土壤养分限制因素。总体来看,土地利用方式的改变会使土壤C、N、P、S含量及其生态化学计量特征发生变化,而这些改变是否有利于生态环境的稳定发展,还有待进一步深入研究。
Abstract:
-

参考文献/References:

[1]Barbier E B,Hacker S D,Kennedy C,et al. The value of estuarine and coastal ecosystem services[J]. Ecological Monographs,2011,81(2):169-193.
[2]陈冲,贾重建,卢瑛,等. 珠江三角洲平原土壤磷剖面分布及形态特征研究[J]. 土壤通报,2015,46(5):1025-1033.
[3]刘京涛,李安琦,孙景宽,等. 黄河三角洲贝壳堤湿地优势灌木碳、氮、磷化学计量特征[J]. 生态学报,2021,41(10):3805-3815.
[4]Piotrowska-Dugosz A,Siwik-Ziomek A,Dugosz J,et al. Spatio-temporal variability of soil sulfur content and arylsulfatase activity at a conventionally managed arable field[J]. Geoderma,2017,295:107-118.
[5]Meng L,Qu F Z,Bi X L,et al. Elemental stoichiometry (C,N,P) of soil in the Yellow River Delta nature reserve:understanding N and P status of soil in the coastal estuary[J]. Science of the Total Environment,2021,751:141737.
[6]邓小军,朱柳霏,宋贤冲,等. 猫儿山自然保护区不同林分类型土壤生态化学计量特征[J]. 土壤通报,2022,53(2):366-373.
[7]Qu F Z,Yu J B,Du S Y,et al. Influences of anthropogenic cultivation on C,N and P stoichiometry of reed-dominated coastal wetlands in the Yellow River Delta[J]. Geoderma,2014,235/236:227-232.
[8]Vitousek P M,Howarth R W. Nitrogen limitation on land and in the sea:how can it occur?[J]. Biogeochemistry,1991,13(2):87-115.
[9]孙国军,李卫红,朱成刚,等. 新疆伊犁河谷土壤碳氮比空间变异及其驱动因素[J]. 中国地理科学,2017,27(4):529-538.
[10]Espinosa D,Sale P,Tang C X. Effect of soil phoshorus availability and residue quality on phosphorus transfer from crop residues to the following wheat[J]. Plant and Soil,2017,416(1):361-375.
[11]褚磊,于君宝,管博.土壤有机硫矿化研究进展[J]. 土壤通报,2014,45(1):240-245.
[12]丁俊男,于少鹏,史传奇,等. 寒区湿地不同土地利用方式对土壤理化性质和团聚体稳定性的影响[J]. 生态学杂志,2021,40(11):3543-3551.
[13]简兴,王松,翟晓钰,等. 安徽三汊河国家湿地公园不同土地利用方式下表层土壤活性有机碳含量[J]. 湿地科学,2019,17(5):511-518.
[14]罗先香,张珊珊,敦萌.辽河口湿地碳、氮、磷空间分布及季节动态特征[J]. 中国海洋大学学报(自然科学版),2010,40(12):97-104.
[15]刘玥,杨继松,于洋,等. 辽河口不同类型湿地土壤碳氮磷生态化学计量学特征[J]. 生态学杂志,2020,39(9):3011-3020.
[16]包德高,王启龙,黄红日.基于最佳特征矢量组合的辽河口湿地分类研究[J]. 水利技术监督,2021,29(2):31-34,156.
[17]刘丹.辽河口湿地生态环境综合需水量计算与应用研究[J]. 水利规划与设计,2021(6):68-71.
[18]Wan S A,Mou X J,Liu X T.Effects of reclamation on soil carbon and nitrogen in coastal wetlands of Liaohe River Delta,China[J]. Chinese Geographical Science,2018,28(3):443-455.
[19]张绪良,张朝晖,谷东起,等. 辽河三角洲滨海湿地的演化[J]. 生态环境学报,2009,18(3):1002-1009.
[20]黄桂林,张建军,李玉祥. 辽河三角洲湿地分类及现状分析——辽河三角洲湿地资源及其生物多样性的遥感监测系列论文之一[J]. 林业资源管理,2000(4):51-56.
[21]Zhang Z S,Xue Z S,Lu X G,et al. Scaling of soil carbon,nitrogen,phosphorus and C ∶N ∶P ratio patterns in peatlands of China[J]. Chinese Geographical Science,2017,27(4):507-515.
[22]胡敏杰,任洪昌,邹芳芳,等. 闽江河口淡水、半咸水沼泽土壤碳氮磷分布及计量学特征[J]. 中国环境科学,2016,36(3):917-926.
[23]白军红,叶晓飞,胡星云,等. 黄河口典型芦苇湿地土壤磷的吸附动力学特征[J]. 自然资源学报,2019,34(12):2580-2587.
[24]俞琳莺,孙志高,陈冰冰,等. 黄河口新生湿地土壤磷赋存形态及其动态变化对外源氮输入的响应[J]. 生态学报,2020,40(16):5793-5804.
[25]郭志勇,李晓晨,王超,等. pH值对玄武湖沉积物中磷的释放及形态分布的影响[J]. 农业环境科学学报,2007,26(3):873-877.
[26]黄廷林,周瑞媛,夏超,等. 氧化还原电位及微生物对水库底泥释磷的影响[J]. 环境化学,2014,33(6):930-936.
[27]Li Q M,Zhang W,Wang X X,et al. Phosphorus in interstitial water induced by redox potential in sediment of Dianchi Lake,China[J]. Pedosphere,2007,17(6):739-746.
[28]Idaszkin Y L,Bouza P J,Marinho C H,et al. Trace metal concentrations in Spartina densiflora and associated soil from a Patagonian salt marsh[J]. Marine Pollution Bulletin,2014,89(1/2):444-450.
[29]Sun Z G,Mou X J,Song H L,et al. Sulfur biological cycle of the different Suaeda salsa marshes in the intertidal zone of the Yellow River Estuary,China[J]. Ecological Engineering,2013,53:153-164.
[30]Johnston S G,Burton E D,Aaso T,et al. Sulfur,iron and carbon cycling following hydrological restoration of acidic freshwater wetlands[J]. Chemical Geology,2014,371:9-26.
[31]Kataoka T,Watanabe-Takahashi A,Hayashi N,et al. Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis[J]. The Plant Cell,2004,16(10):2693-2704.
[32]张雪雯,莫熠,张博雅,等. 干湿交替及凋落物对若尔盖泥炭土可溶性有机碳的影响[J]. 湿地科学,2014,12(2):134-140.
[33]Mailapalli D R,Wallender W W,Burger M,et al. Effects of field length and management practices on dissolved organic carbon export in furrow irrigation[J]. Agricultural Water Management,2010,98(1):29-37.
[34]马芬,马红亮,邱泓,等. 水分状况与不同形态氮添加对亚热带森林土壤氮素净转化速率及N2O排放的影响[J]. 应用生态学报,2015,26(2):379-387.
[35]朱金霞,张源沛,郑国保,等. 水稻田土壤N2O和CO2排放日变化规律及最佳观测时间的确定[J]. 中国农学通报,2014,30(3):146-150.
[36]向雪梅,德科加,林伟山,等. 氮素添加对高寒草甸植物群落多样性和土壤生态化学计量特征的影响[J]. 草地学报,2021,29(12):2769-2777.
[37]邓天天,张玉珠,马培,等. 不同氮磷配比对农田土壤硝化作用的影响[J]. 江苏农业科学,2018,46(17):269-272.
[38]于君宝,褚磊,宁凯,等. 黄河三角洲滨海湿地土壤硫含量分布特征[J]. 湿地科学,2014,12(5):559-565.
[39]张艳,谢文霞,杜云鸿,等. 湿地土壤硫分布及其影响机制研究进展[J]. 土壤通报,2016,47(3):763-768.
[40]牟晓杰,孙志高,刘兴土.黄河口典型潮滩湿地土壤净氮矿化与硝化作用[J]. 中国环境科学,2015,35(5):1466-1473.
[41]Tian H Q,Chen G S,Zhang C,et al. Pattern and variation of C ∶N ∶P ratios in Chinas soils:a synthesis of observational data[J]. Biogeochemistry,2010,98(1):139-151.
[42]刘帅楠,李广,杨传杰,等. 植被类型对黄土丘陵区土壤碳氮磷化学计量特征的季节变异[J]. 水土保持学报,2021,35(6):343-349,360.
[43]陈志杰,肖宇童,董雄德,等. 黄河中下游滩区泥沙淤积对土壤化学计量比的影响[J]. 生态学杂志,2022,41(7):1334-1341.
[44]张剑,宿力,王利平,等. 植被盖度对土壤碳、氮、磷生态化学计量比的影响:以敦煌阳关湿地为例[J]. 生态学报,2019,39(2):580-589.
[45]全小龙,郑元铭,段中华,等. 青海河曲草地土壤全硫及主要养分分布特征[J]. 草业科学,2020,37(11):2234-2242.
[46]盘礼东,李瑞,张玉珊,等. 西南喀斯特区坡耕地秸秆覆盖对土壤生态化学计量特征及产量的影响[J]. 生态学报,2022,42(11):4428-4438.

相似文献/References:

[1]万欣,董元华,王辉,等.番茄温室土壤碳氮磷的生态化学计量学特征及其与土壤酶活性的关系[J].江苏农业科学,2013,41(10):281.
 Wan Xin,et al.Ecological stoichiometric characteristics of carbon,nitrogen and phosphorus and their relationship with enzymatic activity of tomato soil in greenhouses[J].Jiangsu Agricultural Sciences,2013,41(17):281.
[2]冯秀智,童志鹏,胡竹平,等.不同配植孝顺竹土壤-植物氮磷生态化学计量特征[J].江苏农业科学,2018,46(21):315.
 Feng Xiuzhi,et al.Ecological stoichiometric characteristics of nitrogen and phosphorus in plant-soil system of Bambusa multiplex with different managements[J].Jiangsu Agricultural Sciences,2018,46(17):315.
[3]张大庚,栗杰,董越,等.设施菜田土壤碳氮磷生态化学计量学特征[J].江苏农业科学,2023,51(4):232.
 Zhang Dageng,et al.Ecological stoichiometry characteristics of carbon,nitrogen and phosphorus in greenhouse soils[J].Jiangsu Agricultural Sciences,2023,51(17):232.

备注/Memo

备注/Memo:
收稿日期:2022-12-03
基金项目:中国科学院战略性先导科技专项A类课题(编号:XDA28110400);国家自然科学基金(编号:41971140);国家“973”计划(编号:2013CB430401)。
作者简介:姚卫举(1999—),男,安徽滁州人,硕士研究生,主要从事土壤化学研究。E-mail:1048449451@qq.com。
通信作者:徐惠风,博士,教授,主要从事植物生理生态、湿地生态环境与环境生物学的研究。E-mail:xhfzj@163.com。
更新日期/Last Update: 2023-09-05