|本期目录/Table of Contents|

[1]丁倩,吴蕾,张保龙,等.中国基因组学与农业的交叉融合进展与思考[J].江苏农业科学,2023,51(18):28-33.
 Ding Qian,et al.Progress and consideration of cross-integration of Chinas genomics and agriculture[J].Jiangsu Agricultural Sciences,2023,51(18):28-33.
点击复制

中国基因组学与农业的交叉融合进展与思考(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第18期
页码:
28-33
栏目:
专论与综述
出版日期:
2023-09-20

文章信息/Info

Title:
Progress and consideration of cross-integration of Chinas genomics and agriculture
作者:
丁倩1吴蕾1张保龙2张学福1
1.中国农业科学院农业信息研究所,北京 100081; 2.江苏省农业科学院卓越创新中心,江苏南京 210014
Author(s):
Ding Qianet al
关键词:
中国农业基因组学交叉融合研究进展
Keywords:
-
分类号:
Q78;S188
DOI:
-
文献标志码:
A
摘要:
基因组学与农业的交叉融合越来越深入,为以生物种业为龙头的农业发展带来新的机遇。本文试图总结归纳我国基因组学与农业的交叉融合进展,并提出思考展望,以期为科研人员和科研管理者把握研究方向和成果借鉴、为决策者制定我国农业生物技术研究和产业发展战略规划提供全面的分析依据。本文以Web of Science数据库核心合集收录的SCI和SSCI论文数据合集和incoPat数据库收录的专利数据为统计数据源,经专家咨询构建关键叙词表和交叉数据集,并用文献计量分析工具对数据进行分析处理。基因组学在农业领域的研究论文和专利均呈上升趋势,充分反映融合度增强;我国农业基因组学论文发文量、专利申请量均排世界第1,表明我国农业基因组学发展迅猛,但反映影响力的被引频次、高被引论文数量排名仅第2,特别是篇均被引频次仅排第9;专利申请基本在国内,国外布局少,且申请者多为科研单位和高校,企业超前介入的少。未来我国仍需加强农业基因组学基础研究和技术研发,努力提升国际影响力,注重加强与其他组学、新技术的融合;统筹优化科技计划体系,实现创新链条上中下游有效衔接,注重企业超前融入;强化基础支撑,打造高质量的平台和优异的环境,激发农业基因组学原创活力。
Abstract:
-

参考文献/References:

[1]贾继增,高丽锋,赵光耀,等. 作物基因组学与作物科学革命[J]. 中国农业科学,2015,48(17):3316-3347.
[2]陈云伟. 科技评价计量方法述评[J]. 农业图书情报学报,2020,32(8):4-11.
[3]中国科学院. 2013高技术发展报告[M]. 北京:科学出版社,2013:53-68.
[4]唐丁,吕慧颖,王珏,等. 作物基因组学研究进展[J]. 植物遗传资源学报,2018,19(3):383-389.
[5]Wang W S,Mauleon R,Hu Z Q,et al. Genomic variation in 3 010 diverse accessions of Asian cultivated rice[J]. Nature,2018,557(7703):43-49.
[6]Du H L,Yu Y,Ma Y F,et al. Sequencing and de novo assembly of a near complete indica rice genome[J]. Nature Communications,2017,8:15324.
[7]Qiu J,Zhou Y J,Mao L F,et al. Genomic variation associated with local adaptation of weedy rice during de-domestication[J]. Nature Communications,2017,8:15323.
[8]Li L F,Li Y L,Jia Y L,et al. Signatures of adaptation in the weedy rice genome[J]. Nature Genetics,2017,49(5):811-814.
[9]Zhao G Y,Zou C,Li K,et al. The Aegilops tauschii genome reveals multiple impacts of transposons[J]. Nature Plants,2017,3(12):946-955.
[10]Yang N,Xu X W,Wang R R,et al. Contributions of Zea mays subspecies mexicana haplotypes to modern maize[J]. Nature Communications,2017,8:1874.
[11]Fang C,Ma Y M,Wu S W,et al. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean[J]. Genome Biology,2017,18(1):161.
[12]Song Q X,Zhang T Z,Stelly D M,et al. Epigenomic and functional analyses reveal roles of epialleles in the loss of photoperiod sensitivity during domestication of allotetraploid cottons[J]. Genome Biology,2017,18(1):1-14.
[13]Fang L,Wang Q,Hu Y,et al. Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits[J]. Nature Genetics,2017,49(7):1089-1098.
[14]Zhou Y,Ma Y S,Shang Y,et al. Convergence and divergence of cucurbitacin biosynthesis and regulation in cucumber,melon and watermelon[C]//The 13th International Meeting on Biosynthesis,Function and Synthetic Biology of Isoprenoids(TERPNET 2017). 2017:85.
[15]Qiu Q,Zhang G J,Ma T,et al. The yak genome and adaptation to life at high altitude[J]. Nature Genetics,2012,44(8):946-949.
[16]Fang X D,Mou Y L,Huang Z Y,et al. The sequence and analysis of a Chinese pig genome[J]. GigaScience,2012,1:16.
[17]Dong Y,Xie M,Jiang Y,et al. Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus)[J]. Nature Biotechnology,2013,31(2):135-141.
[18]Jiang Y,Xie M,Chen W B,et al. The sheep genome illuminates biology of the rumen and lipid metabolism[J]. Science,2014,344(6188):1168-1173.
[19]Huang Y H,Li Y R,Burt D W,et al. The duck genome and transcriptome provide insight into an avian influenza virus reservoir species[J]. Nature Genetics,2013,45(7):776-783.
[20]Lu L Z,Chen Y,Wang Z,et al. The goose genome sequence leads to insights into the evolution of waterfowl and susceptibility to fatty liver[J]. Genome Biology,2015,16(1):89.
[21]Zheng Y,You S S,Ji C D,et al. Development of an amino acid-functionalized fluorescent nanocarrier to deliver a toxin to kill insect pests[J]. Advanced Materials,2016,28(7):1375-1380.
[22]Burand J P,Hunter W B.RNAi:future in insect management[J]. Journal of Invertebrate Pathology,2013,112:68-74.
[23]阴衍哲. 《保障种子安全种下千年基业》创新机制:筑牢农业“芯片”安全底线[EB/OL]. (2021-02-01)[2022-11-01]. https://m.thepaper.cn/baijiahao_11031429.

相似文献/References:

[1]宋雯雯,陆学文,周华.国库集中支付制度下农业科研经费管理存在的问题及对策[J].江苏农业科学,2014,42(11):485.
 Song Wenwen,et al(8).Problems and countermeasures for management of agricultural scientific research fund under treasury centralization payment system[J].Jiangsu Agricultural Sciences,2014,42(18):485.
[2]汤爱萍,万金保,李爽,等.环境系统工程在农业非点源污染控制中的应用[J].江苏农业科学,2013,41(06):353.
 Tang Aiping,et al.Application of environment system engineering in controlling agricultural non-point source pollution[J].Jiangsu Agricultural Sciences,2013,41(18):353.
[3]龚新蜀,张婧茹.基于VAR模型的我国货币供应量与农产品价格关系的实证研究[J].江苏农业科学,2014,42(10):398.
 Gong Xinshu,et al.Empirical study on relationship between monetary supply and agricultural price based on VAR model[J].Jiangsu Agricultural Sciences,2014,42(18):398.
[4]李万青.中国农业国际竞争力的优势、劣势及提升路径——基于金砖国家农业基本状况的比较[J].江苏农业科学,2014,42(09):437.
 Li Wanqing.Strength, weakness and enhance path of Chinas agricultural international competitiveness—Based on comparative study on basic situation of agriculture in BRIC countries[J].Jiangsu Agricultural Sciences,2014,42(18):437.
[5]张晓莉,逄春蕾,尹作华.基于修正钻石模型的新疆生产建设兵团农业竞争力研究——与黑龙江农垦的比较[J].江苏农业科学,2014,42(09):413.
 Zhang Xiaoli,et al.Study on agricultural competitiveness of Xinjiang Production and Construction Corps based on modified diamond model—Comparative analysis with Heilongjiang land reclamation[J].Jiangsu Agricultural Sciences,2014,42(18):413.
[6]鲍荣龙.设施草莓的安全高效栽培集成技术及产业化趋势[J].江苏农业科学,2013,41(08):166.
 Bao Ronglong.Safe and efficient cultivation integrated technology and industrialization trends for strawberry in greenhouse[J].Jiangsu Agricultural Sciences,2013,41(18):166.
[7]谭维娜,孙中伟,任立凯,等.澳大利亚小麦产业发展趋势及启示[J].江苏农业科学,2014,42(08):15.
 Tan Weina,et al.Trend and enlightenment of development of Australias wheat industry[J].Jiangsu Agricultural Sciences,2014,42(18):15.
[8]王子明.我国种子产业实现跨越式发展面临的挑战与对策[J].江苏农业科学,2014,42(02):1.
 Wang Ziming.Challenges and strategies for Chinas seed industry to achieve leapfrog development[J].Jiangsu Agricultural Sciences,2014,42(18):1.
[9]袁瑞霞,于鹏.中国主要水稻种植区土壤对磷的吸附与解吸特性——以日本宇都宫土壤为参照[J].江苏农业科学,2014,42(02):286.
 Yuan Ruixia,et al.Characteristics of adsorption and desorption of phosphate in soils from Chinas main rice-growing areas—Compared with Utsunomiya soil of Japan[J].Jiangsu Agricultural Sciences,2014,42(18):286.
[10]何榕,盖玉芳,焦隽,等.江苏省扬州市发展农业适度规模经营的探索[J].江苏农业科学,2016,44(05):550.
 He Rong,et al.Exploration of appropriate agriculture scale management development in Yangzhou,Jiangsu Province[J].Jiangsu Agricultural Sciences,2016,44(18):550.
[11]鄢姣,赵军.中国农业风险评估——基于H-P滤波分析与非平衡面板数据的实证研究[J].江苏农业科学,2014,42(09):409.
 Yan Jiao,et al.Risk assessment of Chinas agriculture-Based on empirical study of H-P filter and the unbalanced panel data[J].Jiangsu Agricultural Sciences,2014,42(18):409.
[12]付德申,张晓君,孔令乾.农业机械化、农业信息化与农业发展的关系[J].江苏农业科学,2015,43(06):454.
 Fu Deshen,et al.Relationship between agricultural mechanization,agricultural informatization and agricultural development—Based on empirical study on Chinas provincial panel data[J].Jiangsu Agricultural Sciences,2015,43(18):454.
[13]杨大蓉.土地流转模型论证及其在我国新型城镇化发展中的应用[J].江苏农业科学,2016,44(11):517.
 Yang Darong.Demonstration of land circulation model and its application in Chinas new urbanization[J].Jiangsu Agricultural Sciences,2016,44(18):517.

备注/Memo

备注/Memo:
收稿日期:2022-11-18
基金项目:国家社会科学基金青年项目(编号:18CTQ028)。
作者简介:丁倩(1987—),女,山东龙口人,博士研究生,助理研究员,主要从事专利文献计量研究。E-mail:dingqian@caas.cn。
通信作者:张学福,博士,研究员,博士生导师,主要从事信息可视化、知识组织与检索、农业科技战略情报等研究。E-mail:zhangxuefu@caas.cn。
更新日期/Last Update: 2023-09-20