|本期目录/Table of Contents|

[1]张志超,王珺,霍忠明,等.菲律宾蛤仔牛磺酸转运体蛋白基因鉴定、表达及低盐胁迫响应[J].江苏农业科学,2023,51(18):45-53.
 Zhang Zhichao,et al.Identification,expression and response to low-salt stress of taurine transporter genes in Manalia clam(Ruditapes philippinarum)[J].Jiangsu Agricultural Sciences,2023,51(18):45-53.
点击复制

菲律宾蛤仔牛磺酸转运体蛋白基因鉴定、表达及低盐胁迫响应(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第18期
页码:
45-53
栏目:
生物技术
出版日期:
2023-09-20

文章信息/Info

Title:
Identification,expression and response to low-salt stress of taurine transporter genes in Manalia clam(Ruditapes philippinarum)
作者:
张志超12王珺12霍忠明12聂鸿涛12闫喜武12丁鉴锋12
1.大连海洋大学水产与生命学院,辽宁大连 116023; 2.辽宁省贝类良种繁育工程技术研究中心,辽宁大连 116023
Author(s):
Zhang Zhichaoet al
关键词:
菲律宾蛤仔牛磺酸转运体低盐胁迫基因表达量
Keywords:
-
分类号:
S968.3
DOI:
-
文献标志码:
A
摘要:
牛磺酸转运体在动物牛磺酸代谢过程中发挥着重要作用,对基于基因组获取的菲律宾蛤仔牛磺酸转运体蛋白基因(RpTauT)进行鉴定、结构和组织表达分析,并对低盐胁迫过程中3种壳色蛤仔软体组织牛磺酸含量和水管组织RpTauT基因表达特征进行分析。鉴定出6条RpTauT基因(命名为RpTauT1~RpTauT6),结构分析表明,其推测蛋白具有保守的12个跨膜结构域和钠离子结合位点;系统进化分析表明,蛤仔RpTauT与其他双壳贝类的遗传距离较近;组织表达分析表明,蛤仔RpTauT在外套膜组织和水管组织中表达量高,在性腺和唇瓣组织中表达量低。橙蛤软体部低盐胁迫24 h牛磺酸含量显著升高(P<0.05);3种壳色蛤仔的RpTauT表达量均表现出先升高后降低的趋势,提示3种壳色蛤仔RpTauT基因表达量在低盐胁迫过程中表现出的差异性与不同壳色菲律宾蛤仔抗逆性差异有关。
Abstract:
-

参考文献/References:

[1]Lambert I H,Kristensen D M,Holm J B,et al. Physiological role of taurine-from organism to organelle[J]. Acta Physiologica,2015,213(1):191-212.
[2]Yancey P H. Organic osmolytes as compatible,metabolic and counteracting cytoprotectants in high osmolarity and other stresses[J]. The Journal of Experimental Biology,2005,208(Pt 15):2819-2830.
[3]Kube S,Gerber A,Jansen J M,et al. Patterns of organic osmolytes in two marine bivalves,Macoma balthica,and Mytilus spp.,along their European distribution[J]. Marine Biology,2006,149(6):1387-1396.
[4]Kube S,Sokolowski A,Jansen J M,et al. Seasonal variability of free amino acids in two marine bivalves,Macoma balthica and Mytilus spp.,in relation to environmental and physiological factors[J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2007,147(4):1015-1027.
[5]Takeuchi K,Toyohara H,Sakaguchi M.A hyperosmotic stress-induced mRNA of carp cell encodes Na+- and Cl--dependent high affinity taurine transporter 1[J]. Biochimica et Biophysica Acta,2000,1464(2):219-230.
[6]Toyohara H,The role of taurine in the osmotic adaptation in the marine mussel Mytilus galloprovincialis[J]. Mar Biotechnol,2005,6 S511-S516.
[7]Fugelli K,Rohrs H. The effect of Na+ and osmolality on the influx and steady state distribution of taurine and gamma-aminobutyric acid in flounder (Platichthys flesus) erythrocytes[J]. Comparative Biochemistry and Physiology Part A:Physiology,1980,67(4):545-551.
[8]Babarro J M F,Fernández Reiriz M J,Labarta U,et al. Variability of the total free amino acid (TFAA) pool in Mytilus galloprovincialis cultured on a raft system.Effect of body size[J]. Aquaculture Nutrition,2011,17(2):e448-e458.
[9]Prieto D,Tamayo D,Urrutxurtu I,et al. Nature more than nurture affects the growth rate of mussels[J]. Scientific Reports,2020,10(1):1-13.
[10]Babarro J M F,Fernández Reiriz M J. Variability of taurine concentrations in Mytilus galloprovincialis as a function of body size and specific tissue[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2006,145(1):94-100.
[11]Li R F,Whitworth K,Lai L X,et al. Concentration and composition of free amino acids and osmolalities of porcine oviductal and uterine fluid and their effects on development of porcine IVF embryos[J]. Molecular Reproduction and Development,2007,74(9):1228-1235.
[12]Guérin P,El Mouatassim S,Ménézo Y. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings[J]. Human Reproduction Update,2001,7(2):175-189.
[13]Choi Y H,Chung Y G,Walker S C,et al. In vitro development of equine nuclear transfer embryos:effects of oocyte maturation media and amino acid composition during embryo culture[J]. Zygote (Cambridge,England),2003,11(1):77-86.
[14]Welborn J,Manahan D. Taurine metabolism in larvae of marine invertebrate molluscs (Bilvalvia,Gastropoda)[J]. The Journal of Experimental Biology,1995,198(Pt 8):1791-1799.
[15]Loomis S H,Carpenter J F,Crowe J H. Identification of strombine and taurine as cryoprotectants in the intertidal bivalve Mytilus edulis[J]. Biochimica et Biophysica Acta,1988,943(2):113-118.
[16]Hosoi M,Takeuchi K,Sawada H,et al. Expression and functional analysis of mussel taurine transporter,as a key molecule in cellular osmoconforming[J]. The Journal of Experimental Biology,2005,208(Pt 22):4203-4211.
[17]Nakamura-Kusakabe I,Nagasaki T,Kinjo A,et al. Effect of sulfide,osmotic,and thermal stresses on taurine transporter mRNA levels in the gills of the hydrothermal vent-specific mussel Bathymodiolus septemdierum[J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2016,191:74-79.
[18]Hosoi M,Shinzato C,Takagi M,et al. Taurine transporter from the giant Pacific oyster Crassostrea gigas:function and expression in response to hyper-and hypo-osmotic stress[J]. Fisheries Science,2007,73(2):385-394.
[19]Lin C H,Yeh P L,Lee T H. Time-course changes in the regulation of ions and amino acids in the hard clam Meretrix lusoria upon lower salinity challenge[J]. Journal of Experimental Zoology Part A:Ecological and Integrative Physiology,2021,335(7):602-613.
[20]Yan X W,Nie H T,Huo Z M,et al. Clam genome sequence clarifies the molecular basis of its benthic adaptation and extraordinary shell color diversity[J]. iScience,2019,19(S1):1225-1237.
[21]Chen C J,Chen H,Zhang Y,et al. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant,2020,13(8):1194-1202.
[22]Livak K J,Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods,2001,25(4):402-408.
[23]Bai X Y,Moraes T F,Reithmeier R A F. Structural biology of solute carrier (SLC) membrane transport proteins[J]. Molecular Membrane Biology,2017,34(1/2):1-32.
[24]Espe M,Holen E. Taurine attenuates apoptosis in primary liver cells isolated from Atlantic salmon (Salmo salar)[J]. The British Journal of Nutrition,2013,110(1):20-28.
[25]Schaffer S W,Azuma J,Madura J D. Mechanisms underlying taurine-mediated alterations in membrane function[J]. Amino Acids,1995,8(3):231-246.
[26]Tappaz M L. Taurine biosynthetic enzymes and taurine transporter:molecular identification and regulations[J]. Neurochemical Research,2004,29(1):83-96.
[27]Lin C H,Yeh P L,Lee T H. Ionic and amino acid regulation in hard clam (Meretrix lusoria) in response to salinity challenges[J]. Frontiers in Physiology,2016,7(66):368.
[28]Lobo M V,Alonso F J,del Río R M. Immunohistochemical localization of taurine in the male reproductive organs of the rat[J]. The Journal of Histochemistry and Cytochemistry,2000,48(3):313-320.
[29]Ma N,Ding X H,Miwa T,et al. Immunohistochemical localiztion of taurine in the rat stomach[J]. Advances in Experimental Medicine and Biology,2003,526:229-236.
[30]Pourmozaffar S,Tamadoni Jahromi S,Rameshi H,et al. The role of salinity in physiological responses of bivalves[J]. Reviews in Aquaculture,2020,12(3):1548-1566.
[31]Gilles R. Osmoregulation in three molluscs:Acanthochitona discrepans (Brown),Glycymeris glycymeris (L.) and Mytilus edulis (L.)[J]. The Biological Bulletin,1972,142:25-35.
[32]Hosoi M,Kubota S,Toyohara M,et al. Effect of salinity change on free amino acid content in Pacific oyster[J]. Fisheries Science,2003,69(2):395-400.
[33]Huxtable R J. Physiological actions of taurine[J]. Physiological Reviews,1992,72(1):101-163.
[34]Toyohara H,Yoshida M,Hosoi M,et al. Expression of taurine transporter in response to hypo-osmotic stress in the mantle of Mediterranean blue mussel[J]. Fisheries Science,2005,71(2):356-360.
[35]Silva A L,Wright S H. Integumental taurine transport in Mytilus gill:short-term adaptation to reduced salinity[J]. The Journal of Experimental Biology,1992,162(1):265-279.
[36]Wright S H,Secomb T W. Epidermal taurine transport in marine mussels[J]. The American Journal of Physiology,1984,247(Pt 2):R346-R355.
[37]Meng J,Zhu Q H,Zhang L L,et al. Genome and transcriptome analyses provide insight into the euryhaline adaptation mechanism of Crassostrea gigas[J]. PLoS One,2013,8(3):e58563.
[38]Takaura K,Jong C J,Takahashi K. Role of ROS production and turnover in the antioxidant activity of taurine[J]. Advances in Experimental Medicine and Biology,2015,803:581-596.
[39]Storey K B.Oxidative stress:animal adaptations in nature[J]. Brazilian Journal of Medical and Biological Research,1996,29(12):1715-1733.
[40]Kladchenko E S,Andreyeva A Y,Kukhareva T A,et al. Impact of low salinity on hemocytes morphology and functional aspects in alien clam Anadara[J]. Russian Journal of Biological Invasions,2021,12(2):203-212.
[41]Boamah G,Huang Z K,Shen Y W,et al. Transcriptome analysis reveals fluid shear stress (FSS) and atherosclerosis pathway as a candidate molecular mechanism of short-term low salinity stress tolerance in abalone[J]. BMC Genomics,2022,23(1):1-22.
[42]Martello L B,Friedman C S,Tjeerdema R S. Combined effects of pentachlorophenol and salinity stress on phagocytic and chemotactic function in two species of abalone[J]. Aquatic Toxicology,2000,49(3):213-225.
[43]王化敏,丁鉴锋,杨东敏,等. 4种壳色菲律宾蛤仔在低氧胁迫下的耐受能力比较研究[J]. 大连海洋大学学报,2018,33(2):181-189.
[44]Han X,Budreau A M,Chesney R W. The taurine transporter gene and its role in renal development[J]. Amino Acids,2000,19(3):499-507.
[45]丁鉴锋,王锐,闫喜武,等. 菲律宾蛤仔3种壳色群体低盐耐受能力的比较研究[J]. 大连海洋大学学报,2013,28(3):264-268.
[46]杨东敏,张艳丽,丁鉴锋,等. 高温、 低盐对菲律宾蛤仔免疫能力的影响[J]. 大连海洋大学学报,2017,32(3):302-309.

相似文献/References:

[1]杨晴晴,陈悦,李伟,等.菲律宾蛤仔凝集素在小黄鱼保鲜中的应用研究[J].江苏农业科学,2018,46(20):219.
 Yang Qingqing,et al.Effect of a lectin from manila clam Ruditapes philippinarum on preservation of Pseudosciaena polyactis[J].Jiangsu Agricultural Sciences,2018,46(18):219.

备注/Memo

备注/Memo:
收稿日期:2022-12-06
基金项目:辽宁省科学技术计划(编号:2020-MS-279);国家重点研发计划(编号:2018YFD0901404)。
作者简介:张志超(1999—),男,硕士研究生,主要从事贝类遗传育种研究。E-mail:1216022793@qq.com。
通信作者:丁鉴锋,博士,副教授,主要从事贝类遗传育种研究。E-mail:jfding@dlou.edu.cn。
更新日期/Last Update: 2023-09-20