|本期目录/Table of Contents|

[1]卢园,李瑞娟,赵娜,等.硅对镉胁迫下玉米生长和抗氧化防御系统的影响[J].江苏农业科学,2023,51(20):77-84.
 Lu Yuan,et al.Impacts of silicon on growth and antioxidant defense system of maize under cadmium stress[J].Jiangsu Agricultural Sciences,2023,51(20):77-84.
点击复制

硅对镉胁迫下玉米生长和抗氧化防御系统的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第20期
页码:
77-84
栏目:
遗传育种与耕作栽培
出版日期:
2023-10-20

文章信息/Info

Title:
Impacts of silicon on growth and antioxidant defense system of maize under cadmium stress
作者:
卢园李瑞娟赵娜张盼李霄霄吴佳文
延安大学生命科学学院,陕西延安 716000
Author(s):
Lu Yuanet al
关键词:
玉米抗氧化系统缓解
Keywords:
-
分类号:
S513.01
DOI:
-
文献标志码:
A
摘要:
为探究硅(Si)对镉(Cd)胁迫下玉米的缓解机制,本研究以玉米幼苗为试验材料,分析Cd污染已经存在后,外源施加Si对玉米的缓解作用。以水培法添加5 μmol/L Cd胁迫20 d后,外源施加1 mmol/L Si溶液,添加Si 处理 7 d 后,测定玉米的生物量、Cd浓度、Cd积累量和Cd转运速率(TF)、活性氧[包括过氧化氢(H2O2)和超氧阴离子(O-2·)]含量、总抗氧化能力和抗氧化酶[包括超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)]活性,以及非酶类抗氧化物质[包括抗坏血酸(AsA)和还原性谷胱甘肽(GSH)]含量。结果表明,Cd胁迫对玉米地上部和根系鲜质量以及H2O2和O-2·含量均未有显著性影响,表示玉米有较强的Cd耐受性。施加Si较不施加Si显著地降低了玉米地上部的Cd浓度和Cd积累量,分别降低了44.14%和39.08%;Cd TF降低了35.78%。在叶片中,Cd胁迫下施加Si没有改变玉米的总抗氧化能力、CAT活性、SOD活性、GSH含量和AsA含量,但是加Si显著降低了叶片POD活性。在根系中,Cd胁迫下施加Si显著减少了H2O2含量,POD活性和GSH含量也显著降低。综上,玉米对Cd胁迫有较高的耐受性,而且已经遭受Cd胁迫后再外源施加Si仍能显著降低玉米体内的Cd浓度,减缓Cd污染对玉米生长的潜在危害。
Abstract:
-

参考文献/References:

[1]Antoniadis V,Levizou E,Shaheen S M,et al. Trace elements in the soil-plant interface:phytoavailability,translocation,and phytoremediation:a review[J]. Earth-Science Reviews,2017,171:621-645.
[2]El Rasafi T,Oukarroum A,Haddioui A,et al. Cadmium stress in plants:a critical review of the effects,mechanisms,and tolerance strategies[J]. Critical Reviews in Environmental Science and Technology,2022,52(5):675-726.
[3]Geng N,Wu Y C,Zhang M,et al. Bioaccumulation of potentially toxic elements by submerged plants and biofilms:a critical review[J]. Environment International,2019,131:105015.
[4]Kniuipyte· I,Dikaityte· A,Praspaliauskas M,et al. Oilseed rape (Brassica napus L.) potential to remediate Cd contaminated soil under different soil water content[J]. Journal of Environmental Management,2023,325:116627.
[5]Palansooriya K N,Shaheen S M,Chen S S,et al. Soil amendments for immobilization of potentially toxic elements in contaminated soils:a critical review[J]. Environment International,2020,134:105046.
[6]Fu T T,Zhao R Y,Hu B F,et al. Novel framework for modelling the cadmium balance and accumulation in farmland soil in Zhejiang Province,East China:sensitivity analysis,parameter optimisation,and forecast for 2050[J]. Journal of Cleaner Production,2021,279:123674.
[7]Ougier E ,Fiore K ,Rousselle C ,et al. Burden of osteoporosis and costs associated with human biomonitored cadmium exposure in three European countries:France,Spain and Belgium[J]. International Journal of Hygiene and Environmental Health,2021,234(2):113747.
[8]Wu C Y,Wong C S,Chung C J,et al. The association between plasma selenium and chronic kidney disease related to lead,cadmium and arsenic exposure in a Taiwanese population[J]. Journal of Hazardous Materials,2019,375:224-232.
[9]纪文贵,王珂,蒙建波,等. 中国土壤重金属污染状况及其风险评价[J]. 农业研究与应用,2020,33(5):22-28.
[10]Rizwan M,Ali S,Adrees M,et al. A critical review on effects,tolerance mechanisms and management of cadmium in vegetables[J]. Chemosphere,2017,182:90-105.
[11]Bae J,Benoit D L,Watson A K.Effect of heavy metals on seed germination and seedling growth of common ragweed and roadside ground cover legumes[J]. Environmental Pollution,2016,213:112-118.
[12]Mani D,Sharma B,Kumar C,et al. Cadmium and lead bioaccumulation during growth stages alters sugar and vitamin C content in dietary vegetables[J]. Proceedings of the National Academy of Sciences,2012,82(4):477-488.
[13]Soudek P,Petrová ,Vaňková R,et al. Accumulation of heavy metals using Sorghum sp.[J]. Chemosphere,2014,104:15-24.
[14]刘彩凤,史刚荣,余如刚,等. 硅缓解植物镉毒害的生理生态机制[J]. 生态学报,2017,37(23):7799-7810.
[15]Chen D M,Chen D Q,Xue R R,et al. Effects of boron,silicon and their interactions on cadmium accumulation and toxicity in rice plants[J]. Journal of Hazardous Materials,2019,367:447-455.
[16]Ma J F.Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses[J]. Soil Science and Plant Nutrition,2004,50(1):11-18.
[17]Ma J E,Cai H M,He C W,et al. A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa) cells[J]. New Phytologist,2015,206(3):1063-1074.
[18]Wu J W,Geilfus C M,Pitann B,et al. Silicon-enhanced oxalate exudation contributes to alleviation of cadmium toxicity in wheat[J]. Environmental and Experimental Botany,2016,131:10-18.
[19]Shi Z Y,Yang S Q,Han D,et al. Silicon alleviates cadmium toxicity in wheat seedlings (Triticum aestivum L.) by reducing cadmium ion uptake and enhancing antioxidative capacity[J]. Environmental Science and Pollution Research,2018,25(8):7638-7646.
[20]Swati S,Mohan P S,Shivesh S,et al. Silicon and nitric oxide-mediated mechanisms of cadmium toxicity alleviation in wheat seedlings[J]. Physiologia Plantarum,2020,174(5):e13065.
[21]胡玉超,谢飞,张开京,等. 甜玉米抗非生物胁迫研究进展[J/OL]. 分子植物育种(2022-08-04)[2023-08-08]. http://kns.cnki.net/kcms/detail/46.1068.S.20220804.0858.002.html.
[22]An T,Gao Y M,Kuang Q Q,et al. Effect of silicon on morpho-physiological attributes,yield and cadmium accumulation in two maize genotypes with contrasting root system size and health risk assessment[J]. Plant and Soil,2022,477:117-134.
[23]Kollárová K,Kusá Z,Vatehová-Vivodová Z,et al. The response of maize protoplasts to cadmium stress mitigated by silicon[J]. Ecotoxicology and Environmental Safety,2019,170:488-494.
[24]Janeeshma E,Puthur J T,Ahmad P.Silicon distribution in leaves and roots of rice and maize in response to cadmium and zinc toxicity and the associated histological variations[J]. Physiologia Plantarum,2021,173(1):460-471.
[25]Lukacova Z,Liska D,Bokor B,et al. Silicon and cadmium interaction of maize (Zea mays L.) plants cultivated in vitro[J]. Biologia,2021,76(9):2721-2733.
[26]姜瑛,魏畅,焦秋娟,等. 外源硅对镉胁迫下玉米生理参数及根系构型分级的影响[J]. 草业学报,2022,31(9):139-154.
[27]曲梦雪,宋杰,孙菁,等. 镉胁迫对不同耐镉型玉米品种苗期根系生长的影响[J]. 作物学报,2022,48(11):2945-2952.
[28]Malcˇovská S M,Ducˇaiová Z,Maslaňáková I,et al. Effect of silicon on growth,photosynthesis,oxidative status and phenolic compounds of maize (Zea mays L.) grown in cadmium excess[J]. Water,Air,& Soil Pollution,2014,225(8):2056.
[29]He J L,Zhou J T,Wan H X,et al. Rootstock-scion interaction affects cadmium accumulation and tolerance of Malus[J]. Frontiers in Plant Science,2020,11:1264.
[30]Choppala G,Ullah S,Bolan N,et al. Cellular mechanisms in higher plants governing tolerance to cadmium toxicity[J]. Critical Reviews in Plant Sciences,2014,33(5):374-391.
[31]Shi Y,Zhang Y,Han W H,et al. Silicon enhances water stress tolerance by improving root hydraulic conductance in Solanum lycopersicum L.[J]. Frontiers in Plant Science,2016,7:196.
[32]El-Okkiah S A F,El-Tahan A M,Ibrahim O,et al. Under cadmium stress,silicon has a defensive effect on the morphology,physiology,and anatomy of pea (Pisum sativum L.) plants[J]. Frontiers in Plant Science,2022,13:997475.
[33]Azam S K,Karimi N,Souri Z,et al. Multiple effects of silicon on alleviation of arsenic and cadmium toxicity in hyperaccumulator Isatis cappadocica Desv.[J]. Plant Physiology and Biochemistry,2021,168:177-187.
[34]田国忠,李怀方,裘维蕃. 植物过氧化物酶研究进展[J]. 武汉植物学研究,2001,19(4):332-344.
[35]康育鑫,廖水兰,兰婕,等. 镉胁迫对不同叶用莴苣品种生长及生理特性的影响[J]. 江苏农业科学,2021,49(7):149-154.
[36]Bela K,Riyazuddin R,Csiszár J. Plant glutathione peroxidases:non-heme peroxidases with large functional flexibility as a core component of ROS-processing mechanisms and signalling[J]. Antioxidants,2022,11(8):1624.
[37]Mahmoud A,AbdElgawad H,Hamed B A,et al. Differences in cadmium accumulation,detoxification and antioxidant defenses between contrasting maize cultivars implicate a role of superoxide dismutase in Cd tolerance[J]. Antioxidants,2021,10(11):1812.
[38]Jozefczak M,Remans T,Vangronsveld J,et al. Glutathione is a key player in metal-induced oxidative stress defenses[J]. International Journal of Molecular Sciences,2012,13(3):3145-3175.
[39]Wu Z C,Liu S,Zhao J,et al. Comparative responses to silicon and selenium in relation to antioxidant enzyme system and the glutathione-ascorbate cycle in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis) under cadmium stress[J]. Environmental and Experimental Botany,2017,133:1-11.
[40]Huang Y Y,Huang B F,Shen C,et al. Boron supplying alters cadmium retention in root cell walls and glutathione content in Capsicum annuum[J]. Journal of Hazardous Materials,2022,432:128713.
[41]Jana D,Sophie H,Els P,et al. Glutathione is required for the early alert response and subsequent acclimation in cadmium-exposed Arabidopsis thaliana plants[J]. Antioxidants,2021,11(1):6.

相似文献/References:

[1]孙建伟.水涝胁迫对玉米细胞保护酶同工酶的影响[J].江苏农业科学,2013,41(04):85.
[2]刘荣,张卫建,齐华,等.密植型玉米“中单909”高产群体结构特征[J].江苏农业科学,2013,41(05):56.
 Liu Rong,et al.Study on high yield population structure of close planting maize cultivar “Zhongdan 909”[J].Jiangsu Agricultural Sciences,2013,41(20):56.
[3]沈浜凯,肖龙云,冯乃杰,等.黄腐酸和AM真菌对玉米幼苗抗旱性的影响[J].江苏农业科学,2013,41(05):64.
 Shen Bangkai,et al.Effects of fulvic acid and AM fungi on drought resistance of maize seedlings[J].Jiangsu Agricultural Sciences,2013,41(20):64.
[4]张金然,缑艳霞,孙丽鹏.固氮螺菌157对玉米、向日葵的促生长作用[J].江苏农业科学,2014,42(12):116.
 Zhang Jinran,et al.Effects of Azospirillum 157 on growth of maize and sunflower[J].Jiangsu Agricultural Sciences,2014,42(20):116.
[5]史景允,于伟红,梁秋生.蓖麻对镉污染土壤的修复潜力[J].江苏农业科学,2014,42(11):386.
 Shi Jingyun,et al(8).Potential repairing of cadmium contaminated soil by castor oil plant[J].Jiangsu Agricultural Sciences,2014,42(20):386.
[6]白小军,吴燕,牛艳,等.玉米中乙草胺和莠去津残留量GC-MS/MS分析法的建立[J].江苏农业科学,2014,42(11):334.
 Bai Xiaojun,et al().Establishment of GC-MS/MS analysis method of acetochlor and atrazine residues in maize[J].Jiangsu Agricultural Sciences,2014,42(20):334.
[7]邹晓威,王娜,刘芬,等.玉米抗病相关基因在玉米与玉米丝黑穗病菌、玉米黑粉病菌互作过程中的表达差异分析[J].江苏农业科学,2014,42(11):150.
 Zou Xiaowei,et al(0).Different expression of resistance-related genes between Sporisorium reilianum and Ustilago maydis interact with corn[J].Jiangsu Agricultural Sciences,2014,42(20):150.
[8]杨洪兴,陈静,陈艳萍.江苏省玉米机械化生产的发展及育种对策思考[J].江苏农业科学,2014,42(11):116.
 Yang Hongxing,et al().Development and breeding strategy of mechanized production of maize in Jiangsu Province[J].Jiangsu Agricultural Sciences,2014,42(20):116.
[9]张丽妍,霍剑锋,孟繁盛,等.不同肥料、施肥水平及施用方法对玉米产量、性状及效益的影响[J].江苏农业科学,2014,42(11):119.
 Zhang Liyan,et al (9).Effects of different fertilizers,fertilizer levels and fertilizing methods on yield,characters and benefit of maize[J].Jiangsu Agricultural Sciences,2014,42(20):119.
[10]王雷,崔震海,张立军.玉米C4型PEPC全长基因的克隆与表达载体构建[J].江苏农业科学,2014,42(11):26.
 Wang Lei,et al().Cloning and expression vector construction of full-length C4 type PEPC gene in maize[J].Jiangsu Agricultural Sciences,2014,42(20):26.

备注/Memo

备注/Memo:
收稿日期:2022-12-28
基金项目:延安大学博士科研启动项目(编号:YDBK2019-17);延安大学科学研究专项(编号:YDY2019-27);陕西省大学生创新创业训练计划项目(编号:S202110719126)。
作者简介:卢园(1999—),男,江西金溪人,硕士研究生,主要从事植物营养生理及分子机制研究。E-mail:1186112604@qq.com。
通信作者:吴佳文,博士,副教授,硕士生导师,主要从事植物营养与抗逆机制研究。E-mail:wujiawende@126.com。
更新日期/Last Update: 2023-10-20