|本期目录/Table of Contents|

[1]马红叶,黄伟,冉娜,等.叶面喷施抗蒸腾剂对猕猴桃植株生长发育及生理特性的影响[J].江苏农业科学,2025,53(6):181-191.
 Ma Hongye,et al.Effects of foliar spraying with anti-transpirant on growth and physiological characteristics of kiwifruit plants[J].Jiangsu Agricultural Sciences,2025,53(6):181-191.
点击复制

叶面喷施抗蒸腾剂对猕猴桃植株生长发育及生理特性的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第53卷
期数:
2025年第6期
页码:
181-191
栏目:
园艺与林学
出版日期:
2025-03-20

文章信息/Info

Title:
Effects of foliar spraying with anti-transpirant on growth and physiological characteristics of kiwifruit plants
作者:
马红叶1黄伟1冉娜2罗孝明1杨仕品1李荣飞1乔荣1万明长1李飞2
1.贵州省农业科学院园艺研究所/贵州省园艺工程技术研究中心,贵州贵阳550006; 2.贵州师范学院,贵州贵阳 550018
Author(s):
Ma Hongyeet al
关键词:
抗蒸腾剂猕猴桃光合特性气孔特性抗氧化酶渗透调节物质
Keywords:
-
分类号:
S663.404
DOI:
-
文献标志码:
A
摘要:
以红阳猕猴桃为试验材料,于2023年3月30日(盛花期前2 d)喷施抗蒸腾剂后,测定叶片光合指标、气孔特性、生理指标;4月13日(花后7 d)第2次喷施抗蒸腾剂;4月27日测定生长指标;8月30日采收后,测定果实品质。结果表明,在气孔、光合特性方面,3个抗蒸腾剂处理均显著降低了猕猴桃叶片的气孔长度、宽度及气孔张开长度和宽度;喷施抗蒸腾剂后2~8 d,叶片气孔导度、蒸腾速率均显著低于CK(ZW400处理后8 d时除外),表现为CK>ZW400>ZW500>ZW600。喷施抗蒸腾剂后2~11 d,3个抗蒸腾剂处理的猕猴桃叶片胞间CO2浓度较CK显著降低(处理后8 d的ZW400处理除外),并且随着喷施浓度的降低而减少。低浓度ZW600处理的叶片净光合速率显著降低(处理后14 d时除外),但中、高浓度的ZW400、ZW500处理与CK间的差异不显著(ZW500处理后5 d时、ZW400处理后8 d时除外)。在抗氧化系统方面,中、高量抗蒸腾剂的ZW500、ZW400处理叶片的超氧化物歧化酶(SOD)、过氧化物酶(POD)活性在处理期间始终高于CK(喷施抗蒸腾剂后11 d时除外),CAT活性在喷施抗蒸腾剂后2~5 d高于CK。ZW600处理叶片的SOD、POD、过氧化氢酶(CAT)活性在处理中后期(8~14 d)均低于CK。3个抗蒸腾剂处理的叶片丙二醛(MDA)含量在喷施抗蒸腾剂后2~8 d与CK间的差异不显著;在处理后11~14 d,中、高量抗蒸腾剂处理(ZW500、ZW400)的MDA含量显著低于CK。中、高量抗蒸腾剂处理(ZW500、Z400)的游离脯氨酸含量在喷施抗蒸腾剂后5~8 d显著高于CK,可溶性糖、可溶性蛋白含量在采样期间始终显著低于CK。在植株生长、果实品质方面,喷施抗蒸腾剂除了可以提高猕猴桃叶片含水量、坐果率外,未对植株生长发育、果实品质产生显著影响。综上所述,花期喷施抗蒸腾剂可显著减小猕猴桃叶片的气孔张开宽度、开张长度,降低气孔导度和蒸腾速率,减少水分散失,维持叶片含水量,提高坐果率;提高抗氧化酶活性,降低猕猴桃植株的MDA、可溶性糖、可溶性蛋白含量,提高猕猴桃抵御高温干旱的能力,以盛花期前2 d按 2.0~2.5 mL/L 浓度进行喷施的效果最佳,前后喷施间隔14 d以上为佳。
Abstract:
-

参考文献/References:

[1]池再香,罗培富,孙翔,等. 低温天气过程对贵州西部红心猕猴桃坐果率的影响调查[J]. 中国农业气象,2020,41(12):807-813.
[2]陈蕴,姚静,池再香. 气象灾害对六盘水市农业生产的影响[J]. 安徽农业科学,2016,44(35):191-192,219.
[3]邹秀琴,严旭丽,季伟灵. 高温干旱对山地猕猴桃生长发育的影响及其防御措施[J]. 现代园艺,2015(3):24-25.
[4]Mphande W,Farrell A D,Kettlewell P S. Commercial uses of antitranspirants in crop production:a review[J]. Outlook on Agriculture,2023,52(1):3-10.
[5]白云岗. 极端干旱区成龄葡萄需水规律及微灌节水技术研究[D]. 乌鲁木齐:新疆农业大学,2011.
[6]陈怡昊,李波,王奇峰,等. FA型抗蒸腾剂对温室黄瓜生长和产量的影响[J]. 江苏农业科学,2018,46(4):131-134,142.
[7]González-Santamaría R,Ruiz-González R,Nonell S,et al. Influence of foliar riboflavin applications to vineyard on grape amino acid content[J]. Food Chemistry,2018,240:601-606.
[8]李婉平,刘敏,王皆行,等. 炎热气候条件下抗蒸腾剂对酿酒葡萄光合特性与葡萄酒品质的影响[J]. 中国农业科学,2019,52(17):3008-3019.
[9]Delfine S,Tognetti R,Desiderio E,et al. Effect of foliar application of N and humic acids on growth and yield of durum wheat[J]. Agronomy for Sustainable Development,,25(2):183-191.
[10]张宪政. 植物叶绿素含量测定:丙酮乙醇混合液法[J]. 辽宁农业科学,1986(3):26-28.
[11]邹琦. 植物生理生化实验指导[M]. 北京:中国农业出版社,1995:28-154.
[12]Djanaguiraman M,Vidhya Bharathi K S,Raghu R,et al. Sorghum drought tolerance is enhanced by cerium oxide nanoparticles via stomatal regulation and osmolyte accumulation[J]. Plant Physiology and Biochemistry,2024,212:108733.
[13]Zhou Y M,Jiang X J,Schaub M,et al. Ten-year exposure to elevated CO2 increases stomatal number of Pinus koraiensis and P.sylvestriformis needles[J]. European Journal of Forest Research,2013,132(5):899-908.
[14]Dow G J,Bergmann D C. Patterning and processes:how stomatal development defines physiological potential[J]. Current Opinion in Plant Biology,2014,21:67-74.
[15]Glenn D M. The mechanisms of plant stress mitigation by Kaolin-based particle films and applications in horticultural and agricultural crops[J]. HortScience,,47(6):710-711.
[16]刘广成,罗勇,李强,等. 两种新型抗蒸腾剂对小麦抗旱增产效果的影响[J]. 腐植酸,2014(6):13-19.
[17]Pereira T S,Oliveira L A,Andrade M T,et al. Linking water-use strategies with drought resistance across herbaceous crops[J]. Physiologia Plantarum,2024,176(1):e14114.
[18]Iriti M,Picchi V,Rossoni M,et al. Chitosan antitranspirant activity is due to abscisic acid-dependent stomatal closure[J]. Environmental and Experimental Botany,2009,66(3):493-500.
[19]刘青,徐肖阳,王云霞,等. 水分胁迫对油松抗旱生理特征的影响[J]. 水土保持学报,2024,38(5):1-11.
[20]徐洪高,徐萍,罗文秀,等. 热驯化对高温胁迫下灯盏花生理生化特性的影响[J]. 作物杂志,2024,1-9.
[21]何爽. 不同类型抑制蒸腾剂对大豆和冬小麦生长及产量的影响[D]. 北京:中国农业科学院,2009.
[22]Mphande W,Kettlewell P S,Grove I G,et al. The potential of antitranspirants in drought management of arable crops:a review[J]. Agricultural Water Management,2020,236:106143.
[23]师长海,孔少华,翟红梅,等. 喷施抗蒸腾剂对冬小麦旗叶蒸腾效率的影响[J]. 中国生态农业学报,2011,19(5):1091-1095.
[24]朴春红,宝音巴特,郭占全,等. 抗蒸腾剂对玉米主要叶片光合特性及生理特性的影响[J]. 分子植物育种,2017,15(10):4289-4293.
[25]Palliotti A,Poni S,Berrios J G,et al. Vine performance and grape composition as affected by early-season source limitation induced with anti-transpirants in two red Vitis vinifera L. cultivars[J]. Australian Journal of Grape and Wine Research,2010,16(3):426-433.
[26]Brillante L,Belfiore N,Gaiotti F,et al. Comparing Kaolin and pinolene to improve sustainable grapevine production during drought[J]. PLoS One,2016,11(6):e0156631.
[27]Tubajika K M,Civerolo E L,Puterka G J,et al. The effects of Kaolin,harpin,and imidacloprid on development of Pierce’s disease in grape[J]. Crop Protection,2007,26(2):92-99.
[28]Azizifar S,Abdossi V,Gholami R,et al. Evaluation of theeffects of kaolin and salicylic acid on yield and some physiological responses of olives underdrought stress[J]. Journal of Horticultural Science,2022,35(4):605-619.
[29]Anjum S,Xie X Y,Wang L C,et al. Morphological,physiological and biochemical responses of plants to drought stress[J]. African Journal of Agricultural Research,2011,6(9):2026-2032.
[30]Diem H. Cluster roots in Casuarinaceae:role and relationship to soil nutrient factors[J]. Annals of Botany,85(6):929-936.
[31]陈怡昊,李波,王奇峰,等. FA型抗蒸腾剂对温室黄瓜生长和产量的影响[J]. 江苏农业科学,2018,46(4):131-134,142.
[32]李茂松,李森,张述义,等. 灌浆期喷施新型FA抗蒸腾剂对冬小麦的生理调节作用研究[J]. 中国农业科学,2005,38(4):703-708.
[33]Flora G N,Babu J D,Lakshmi L M,et al. Effect of anti-transpirants on the transpiration rate and photosynthetic index of sweet orange [Citrus sinensis (L.) Osbeck][J]. Journal of Pharmacognosy and Phytochemistry,2020,9:3011-3017.
[34]Kanabar P. Effect of fulvic acid on yield and quality of organic bell pepper[D]. Nashville:Tennessee State University,2022:1-15.
[35]He X Y,Zhang H Q,Li J X,et al. The positive effects of humic/fulvic acid fertilizers on the quality of lemon fruits[J]. Agronomy,2022,12(8):1919.

相似文献/References:

[1]刘艺,朱杰,苑平,等.农杆菌介导的猕猴桃ACO反义基因遗传转化[J].江苏农业科学,2013,41(05):26.
 Liu Yi,et al.Genetic transformation of kiwifruit ACO antisense gene mediated by Agrobacterium tumefaciens[J].Jiangsu Agricultural Sciences,2013,41(6):26.
[2]于红梅,赵密珍,钱亚明,等.海沃德猕猴桃带芽茎段的组织培养快繁技术[J].江苏农业科学,2014,42(11):78.
 Yu Hongmei,et al(78).Tissue culture and rapid propagation technology of kiwifruit “Hayward” by stems with buds[J].Jiangsu Agricultural Sciences,2014,42(6):78.
[3]钱亚明,赵密珍,庞夫花.不同产地红阳和徐香猕猴桃种子发芽试验[J].江苏农业科学,2014,42(10):154.
 Qian Yaming,et al.Seed germination test of kiwifruit cultivars “Hongyang” and “Xuxiang” from different habitats[J].Jiangsu Agricultural Sciences,2014,42(6):154.
[4]陈永安,陈鑫,刘艳飞,等.夏季修剪对华优猕猴桃新蔓发育及结果的影响[J].江苏农业科学,2013,41(07):157.
 Chen Yongan,et al.Effects of summer pruning on new vine growth and fruiting of “Huayou” kiwifruit[J].Jiangsu Agricultural Sciences,2013,41(6):157.
[5]叶开玉,蒋桥生,龚弘娟,等.不同授粉方式对红阳猕猴桃坐果率和果实品质的影响[J].江苏农业科学,2014,42(08):165.
 Ye Kaiyu,et al.Effects of different pollination methods on fruit setting rates and quality of “Hongyang” kiwifruit[J].Jiangsu Agricultural Sciences,2014,42(6):165.
[6]张计育,莫正海,黄胜男,等.不同储藏温度对猕猴桃果实后熟过程中品质的影响[J].江苏农业科学,2013,41(11):295.
 Zhang Jiyu,et al.Effect of storage temperature on quality of kiwifruit during post-ripeness[J].Jiangsu Agricultural Sciences,2013,41(6):295.
[7]叶开玉,蒋桥生,龚弘娟,等.猕猴桃嫁接繁殖与砧木选择试验[J].江苏农业科学,2014,42(01):138.
 Ye Kaiyu,et al.Study on grafting propagation and rootstock selection of kiwi[J].Jiangsu Agricultural Sciences,2014,42(6):138.
[8]刘晓燕,王瑞,梁虎,等.不同温度贮藏贵长猕猴桃采后生理和品质变化[J].江苏农业科学,2015,43(06):264.
 Liu Xiaoyan,et al.Effects of temperature on postharvest physiology and quality of Guichang kiwi fruit[J].Jiangsu Agricultural Sciences,2015,43(6):264.
[9]阎永齐,刘吉祥,刘磊,等.猕猴桃与葡萄立体栽培试验研究[J].江苏农业科学,2015,43(06):164.
 Yan Yongqi,et al.Experimental study on stereo-cultivation of kiwi fruit and grape[J].Jiangsu Agricultural Sciences,2015,43(6):164.
[10]冉舞,陆引罡,马军.烤烟保水剂与抗蒸腾剂使用技术研究[J].江苏农业科学,2015,43(04):119.
 Ran Wu,et al.Study on application techniques of super absorbent polymers and transpiration resistant agent in tobacco[J].Jiangsu Agricultural Sciences,2015,43(6):119.

备注/Memo

备注/Memo:
收稿日期:2024-11-05
基金项目:贵州省科技支撑计划[编号:黔科合支撑(2022)一般115、黔科合支撑(2024)一般170];贵州省精品水果产业技术体系项目(编号:GZCYTX2022);贵州省科技计划[编号:黔科合服企(2022)005-H-12]、贵州省农业科学院省财政科研专项[编号:黔农科种质资源(2023)17号]。
作者简介:马红叶(1989—),女,河北邢台人,硕士,助理研究员,主要从事果树种质资源与遗传育种研究。E-mail:653751327@qq.com。
通信作者:黄伟,硕士,副研究员,主要从事果树种质资源与遗传育种研究。E-mail:chianc-qhw@163.com。
更新日期/Last Update: 2025-03-20