[1]Carlsson A S,Yilmaz J L,Green A G,et al. Replacing fossil oil with fresh oil-with what and for what?[J]. European Journal of Lipid Science and Technology,2011,113(7):812-831.
[2]Thelen J J,Ohlrogge J B. Metabolic engineering of fatty acid biosynthesis in plants[J]. Metabolic Engineering,2002,4(1):12-21.
[3]Napier J A. The production of unusual fatty acids in transgenic plants[J]. Plant Biology,2007,58(58):295-319.
[4]Bates P D,Stymne S,Ohlrogge J. Biochemical pathways in seed oil synthesis[J]. Current Opinion in Plant Biology,2013,16(3):358-364.
[5]Tjellstrm H,Strawsine M,Ohlrogge J B. Tracking synthesis and turnover of triacylglycerol in leaves[J]. Journal of Experimental Botany,2015,66(5):1453-1461.
[6]Hurlock A K,Roston R L,Wang K,et al. Lipid trafficking in plant cells[J]. Traffic,2014,15(9):915-932.
[7]Xu C C,Fan J L,Cornish A J,et al. Lipid trafficking between the endoplasmic reticulum and the plastid in Arabidopsis requires the extraplastidic TGD4 protein[J]. The Plant Cell,2008,20(8):2190-2204.
[8]Mu J Y,Tan H L,Zheng Q,et al. LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis[J]. Plant Physiology,2008,148(2):1042-1054.
[9]Klaus D,Ohlrogge J B,Neuhaus H E,et al. Increased fatty acid production in potato by engineering of acetyl-CoA carboxylase[J]. Planta,2004,219(3):389-396.
[10]Mendoza M S,Dubreucq B,Miquel M,et al. LEAFY COTYLEDON 2 activation is sufficient to trigger the accumulation of oil and seed specific mRNAs in Arabidopsis leaves[J]. FEBS Letters,2005,579(21):4666-4670.
[11]Kim H U,Jung S J,Lee K R,et al. Ectopic overexpression of castor bean LEAFY COTYLEDON2 (LEC2) in Arabidopsis triggers the expression of genes that encode regulators of seed maturation and oil body proteins in vegetative tissues[J]. FEBS Open Bio,2013,4(1):25-32.
[12]Nookaraju A,Pandey S K,Fujino T,et al. Enhanced accumulation of fatty acids and triacylglycerols in transgenic tobacco stems for enhanced bioenergy production[J]. Plant Cell Reports,2014,33(7):1041-1052.
[13]Andrianov V,Borisjuk N,Pogrebnyak N,et al. Tobacco as a production platform for biofuel:overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass[J]. Plant Biotechnology Journal,2010,8(3):277-287.
[14]Kim H U,Lee K R,Jung S J,et al. Senescence-inducible LEC2 enhances triacylglycerol accumulation in leaves without negatively affecting plant growth[J]. Plant Biotechnology Journal,2015,13(9):1346-1359.
[15]Sanjaya,Durrett T P,Weise S E,et al. Increasing the energy density of vegetative tissues by diverting carbon from starch to oil biosynthesis in transgenic Arabidopsis[J]. Plant Biotechnology Journal,2011,9(8):874-883.
[16]Vanhercke T,El Tahchy A,Shrestha P,et al. Synergistic effect of WRI1 and DGAT1 coexpression on triacylglycerol biosynthesis in plants[J]. FEBS Letters,2013,587(4):364-369.
[17]Grimberg ,Carlsson A S,Marttila S,et al. Transcriptional transitions in Nicotiana benthamiana leaves upon induction of oil synthesis by WRINKLED1 homologs from diverse species and tissues[J]. BMC Plant Biology,2015,15(1):1-17.
[18]Yang Y,Munz J,Cass C,et al. Ectopic expression of WRINKLED1 affects fatty acid homeostasis in brachypodium distachyon vegetative tissues[J]. Plant Physiology,2015,169(3):1836-1847.
[19]Fan J L,Yan C S,Zhang X E,et al. Dual role for phospholipid:diacylglycerol acyltransferase:enhancing fatty acid synthesis and diverting fatty acids from membrane lipids to triacylglycerol in Arabidopsis leaves[J]. The Plant Cell,2013,25(9):3506-3518.
[20]Fan J,Yan C,Roston R,et al. Arabidopsis lipins,PDAT1 acyltransferase,and SDP1 triacylglycerol lipase synergistically direct fatty acids toward bioxidation,thereby maintaining membrane lipid homeostasis[J]. Plant Cell,2014,26(10):4119-4134.
[21]Napier J A,Haslam R P,Beaudoin F,et al. Understanding and manipulating plant lipid composition:metabolic engineering leads the way[J]. Current Opinion in Plant Biology,2014,19(100):68-75.
[22]Jako C,Kumar A,Wei Y D,et al. Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight[J]. Plant Physiology,2001,126(2):861-874.
[23]Chapman K D,Dyer J M,Mullen R T. Commentary:Why dont plant leaves get fat?[J]. Plant Science,2013,207:128-134.
[24]Petrie J R,Vanhercke T,Shrestha P,et al. Recruiting a new substrate for triacylglycerol synthesis in plants:the monoacylglycerol acyltransferase pathway[J]. PLoS One,2012,7(4):e35214.
[25]Bouvier-Navé P,Benveniste P,Oelkers P,et al. Expression in yeast and tobacco of plant cDNAs encoding acyl CoA:diacylglycerol acyltransferase[J]. European Journal of Biochemistry,2000,267(1):85-96.
[26]Sanjaya,Miller R,Durrett T P,et al. Altered lipid composition and enhanced nutritional value of Arabidopsis leaves following introduction of an algal diacylglycerol acyltransferase 2[J]. The Plant Cell,2013,25(2):677-693.
[27]Xu J,Carlsson A S,Francis T,et al. Triacylglycerol synthesis by PDAT1 in the absence of DGAT1 activity is dependent on re-acylation of LPC by LPCAT2[J]. BMC Plant Biology,2012,12(1):1-22.
[28]Bates P D,Ohlrogge J B,Pollard M. Incorporation of newly synthesized fatty acids into cytosolic glycerolipids in pea leaves occurs via acyl editing[J]. Journal of Biological Chemistry,2007,282(43):31206-31216.
[29]Bates P D,Fatihi A,Snapp A R,et al. Acyl editing and headgroup exchange are the major mechanisms that direct polyunsaturated fatty acid flux into triacylglycerols[J]. Plant Physiology,2012,160(3):1530-1539.
[30]Stahl U,Carlsson A S,Lenman M,et al. Cloning and functional characterization of a phospholipid:diacylglycerol acyltransferase from Arabidopsis[J]. Plant Physiology,2004,135(3):1324-1335.
[31]Mhaske V,Beldjilali K,OHLROGGE J,et al. Isolation and characterization of an Arabidopsis thaliana knockout line for phospholipid:diacylglycerol transacylase gene (At5g13640)[J]. Plant Physiology and Biochemistry,2005,43(4):413-417.
[32]Fan J L,Yan C S,Xu C C. Phospholipid:diacylglycerol acyltransferase-mediated triacylglycerol biosynthesis is crucial for protection against fatty acid-induced cell death in growing tissues of Arabidopsis[J]. Plant Journal,2013,76(6):930-942.
[33]Chapman K D,Dyer J M,Mullen R T. Biogenesis and functions of lipid droplets in plants[J]. Journal of Lipid Research,2012,53(2):215-226.
[34]Kelly A A,van Erp H,Quettier A L,et al. The SUGAR-DEPENDENT1 lipase limits triacylglycerol accumulation in vegetative tissues of Arabidopsis[J]. Plant Physiology,2013,162(3):1282-1289.
[35]Park S,Gidda S K,James C N,et al. The α/β hydrolase CGI-58 and peroxisomal transport protein PXA1 coregulate lipid homeostasis and signaling in Arabidopsis[J]. Plant Cell,2013,25(5):1726-1739.
[36]Yamaguchi T,Omatsu N,Morimoto E,et al. CGI-58 facilitates lipolysis on lipid droplets but is not involved in the vesiculation of lipid droplets caused by hormonal stimulation[J]. Journal of Lipid Research,2007,48(5):1078-1089.
[37]James C N,Horn P J,Case C R,et al. Disruption of the Arabidopsis CGI-58 homologue produces Chanarin-Dorfman-like lipid droplet accumulation in plants[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(41):17833-17838.
[38]Slocombe S P,Cornah J,Pinfield-Wells H,et al. Oil accumulation in leaves directed by modification of fatty acid breakdown and lipid synthesis pathways[J]. Plant Biotechnology Journal,2009,7(7):694-703.
[39]Hernández M L,Whitehead L,He Z,et al. A cytosolic acyltransferase contributes to triacylglycerol synthesis in sucrose-rescued Arabidopsis seed oil catabolism mutants[J]. Plant Physiology,2012,160(1):215-225.
[40]Fell D A. Understanding the control of metabolism[M]. London:Portland Press,1997.
[41]Van Erp H,Kelly A A,Menard G,et al. Multigene engineering of triacylglycerol metabolism boosts seed oil content in Arabidopsis[J]. Plant Physiology,2014,165(1):30-36.
[42]Xu C,Shanklin J. Triacylglycerol metabolism,function,and accumulation in plant vegetative tissues[J]. Plant Biology,2016,67(67):1311-1328.
[43]Vanhercke T,Petrie J R,Singh S P. Energy densification in vegetative biomass through metabolic engineering[J]. Biocatalysis and Agricultural Biotechnology,2014,3(1):75-80.
[44]Wu H Y,Liu C,Li M C,et al. Effects of monogalactoglycerolipid deficiency and diacylglycerol acyltransferase overexpression on oil accumulation in transgenic tobacco[J]. Plant Molecular Biology Reporter,2013,31(5):1077-1088.
[45]Vanhercke T,El Tahchy A,Liu Q,et al. Metabolic engineering of biomass for high energy density:oilseed-like triacylglycerol yields from plant leaves[J]. Plant Biotechnology Journal,2014,12(2):231-239.
[46]Zale J,Jung J H,Kim J Y,et al. Metabolic engineering of sugarcane to accumulate energy-dense triacylglycerols in vegetative biomass[J]. Plant Biotechnology Journal,2016,14(2):661-669.
[1]颉江,覃川杰,侯平,等.沱江宽体沙鳅和中华沙鳅亲鱼脂肪酸组成分析[J].江苏农业科学,2013,41(05):290.
Xie Jiang,et al.Analysis of fatty acid composition in brood stocks of Botia reevesae and Botia supercilliaris from Tuojiang River[J].Jiangsu Agricultural Sciences,2013,41(01):290.
[2]赵卫红,於叶兵,王资生,等.不同脂肪源饵料对日本沼虾抗氧化机能及肝胰腺和卵巢中脂肪酸含量的影响[J].江苏农业科学,2014,42(12):266.
Zhao Weihong,et al.Effects of different sources of fat diets on antioxidant function and fatty acids concentrations in hepatopancreas and ovary of oriental river prawn,Macrobrachium nipponensis[J].Jiangsu Agricultural Sciences,2014,42(01):266.
[3]王日君,张卓一,孙国波,等.黑羽番鸭不同阶段胸腿肌脂肪酸组成的比较[J].江苏农业科学,2014,42(11):231.
Wang Rijun,et al().Comparative study on fatty acid composition of chest muscle and leg muscle in black muscovy ducks[J].Jiangsu Agricultural Sciences,2014,42(01):231.
[4]谢程炜,诸永志,王道营,等.3个品种鸭肉排酸成熟后脂肪酸组成的比较[J].江苏农业科学,2013,41(07):231.
Xie Chengwei,et al.Comparison of fatty acid compositions of three duck species after postmortem aging[J].Jiangsu Agricultural Sciences,2013,41(01):231.
[5]钱宗耀,郑伟华,华震宇,等.气质联用技术分析玫瑰花中的脂肪酸组成[J].江苏农业科学,2014,42(02):241.
Qian Zongyao,et al.Analysis of fatty acids composition in flower of Rosa rugosa Thunb by gas chromatography and mass spectrometry method[J].Jiangsu Agricultural Sciences,2014,42(01):241.
[6]缪凌鸿,戈贤平,高启平,等.不同体型鳙鱼幼鱼营养成分与品质的比较[J].江苏农业科学,2016,44(04):334.
Miao Linghong,et al.Composition analysis and nutritional evaluation of different somatotypes of juvenile bighead carp (Aristichthys nobilis)[J].Jiangsu Agricultural Sciences,2016,44(01):334.
[7]贾昌路,张锐利,张宏,等.新疆阿克苏地区核桃品质分析[J].江苏农业科学,2016,44(04):351.
Jia Changlu,et al.Analysis of quality of walnut in Akesu area, Xinjiang[J].Jiangsu Agricultural Sciences,2016,44(01):351.
[8]杨昌彪,张运依,李占彬,等.菜籽油中主要脂肪酸成分的检测分析[J].江苏农业科学,2015,43(11):392.
Yang Changbiao,et al.Detection of main fatty acids composition of rapeseed oil[J].Jiangsu Agricultural Sciences,2015,43(01):392.
[9]乔艳明,陈文强,邓百万,等.3种饲料对杜长大猪肉氨基酸与脂肪酸含量的影响[J].江苏农业科学,2015,43(06):204.
Qiao Yanming,et al.Effects of three kinds of pig feeds on amino acid and fatty acid contents of DLY pig meat[J].Jiangsu Agricultural Sciences,2015,43(01):204.
[10]梁 龙,陆利霞,游京晶,等.臭氧水处理对鸭肉中微生物和油脂的影响[J].江苏农业科学,2015,43(02):252.
Liang Long,et al.Effects of ozone water treatment on microbes and fatty acids in duck meat[J].Jiangsu Agricultural Sciences,2015,43(01):252.