|本期目录/Table of Contents|

[1]杨荧,刘莉文,李建宏.微藻富集重金属的机制及在环境修复中的应用综述[J].江苏农业科学,2019,47(21):88-94.
 Yang Ying,et al.Accumulation mechanism of heavy metals by microalgae and its application in environmental remediation: a review[J].Jiangsu Agricultural Sciences,2019,47(21):88-94.
点击复制

微藻富集重金属的机制及在环境修复中的应用综述(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第47卷
期数:
2019年第21期
页码:
88-94
栏目:
专论与综述
出版日期:
2019-12-05

文章信息/Info

Title:
Accumulation mechanism of heavy metals by microalgae and its application in environmental remediation: a review
作者:
杨荧 刘莉文 李建宏
南京师范大学生命科学学院,江苏南京 210023
Author(s):
Yang Yinget al
关键词:
重金属微藻机制影响因素污染修复
Keywords:
-
分类号:
X173;X171.4
DOI:
-
文献标志码:
A
摘要:
消除环境中的重金属污染是亟待解决的课题。微藻具有很高的富集重金属的能力,它们具有繁殖快、易培养、可选择种类多等特点,具有广阔的应用前景,引起了科研工作者的广泛关注。系统梳理目前国内外有关微藻富集重金属的机制的研究进展,概述影响微藻富集重金属的生物因素(包括藻种生活状态、种类、耐受能力、大小、生物量浓度)和非生物因素(包括金属离子浓度和形态、pH值、温度、接触时间、光照等),介绍了微藻在重金属污染环境修复中的运用(包括修复污染水体、稻田以及土壤)。
Abstract:
-

参考文献/References:

[1]刘静宜. 环境化学[M]. 北京:中国环境科学出版社,1987:123-132.
[2]Inouhe M,Sumiyoshi M,Tohoyama H,et al. Resistance to cadmium ions and formation of a cadmium-binding complex in various wild-type yeasts[J]. Plant and Cell Physiology,1996,37(3):341-346.
[3]胡国飞,孟祥和. 重金属废水处理[M]. 北京:化学工业出版社,2000.
[4]邹宁,李艳,孙东红. 几种有经济价值的微藻及其应用[J]. 烟台师范学院学报(自然科学版),2005,21(1):59-63.
[5]刘学虎,张清,马伟. 非活性藻类吸附重金属的研究[J]. 山东化工,2002,31(3):15-17.
[6]常秀莲,王文华,冯咏梅,等. 不同海藻吸附重金属镉离子的研究[J]. 离子交换与吸附,2002,18(5):432-439.
[7]周洪英,王学松,李娜,等. 关于海藻吸附水溶液中重金属离子的研究进展[J]. 科技导报,2006,24(12):61-66.
[8]Kanchana S,Jeyanthi J,Kathiravan R,et al. Biosorpition of heavy metals using algae:a review[J]. International Journal of Pharma Medicine and Biological Sciences,2014,3:2.
[9]Vogel M,Gunther A,Rossberg A,et al. Biosorption of U(Ⅵ)by the green algae Chlorella vulgaris in dependence of pH value and cell activity[J]. Total Environment,2010,409(2):384-395.

[10]Klimmek S,Stan H J,Wilke A,et al. Comparative analysis of the biosorption of cadmium,lead,nickel,and zinc by algae[J]. Environmental Science & Technology,2001,35(21):4283-4288.

[11]赵玲,尹平河,Yu Q M,等. 海洋赤潮生物原甲藻对重金属的富集机理[J]. 环境科学,2001,22(4):42-45.

[12]吴海锁,张洪玲,张爱茜,等. 小球藻吸附重金属离子的试验研究[J]. 环境化学,2004,23(2):173-177.

[13]Gardea-Torresdey J L,Becker-Hapak M K,Hosea J M,et al. Effect of chemical modification of algal carboxyl groups on metal ion binding[J]. Environmental Science & Technology,1990,24(9):1372-1378.

[14]Sekabira K,Origa H O,Basamba T A,et al. Assessment of heavy metal pollution in the urban stream sediments and its tributaries[J]. International Journal of Environmental Science & Technology,2010,7(3):435-446.

[15]李建宏,曾昭琪,薛宇鸣,等. 极大螺旋藻富积重金属机理的研究[J]. 海洋与湖沼,1998,29(3):274-279.

[16]Davis T A,Llanes F,Volesky B,et al. H1-NMR study of Na alginates extracted from Sargassum spp. in relation to metal biosorption[J]. Applied Biochemistry and Biotechnology,2003,110(2):75-90.

[17]Yun Y S,Volesky B. Modeling of Lithium interference in cadmium biosorption[J]. Environmental Science & Technology,2003,37(16):3601-3608.

[18]Raize O,Argaman Y,Yannai S. Mechanisms of biosorption of different heavy metals by brown marine macroalgae[J]. Biotechnology and Bioengineering,2004,87(4):451-458.

[19]Chojnacka K,Chojnacki A,Gorecka H. Biosorption of Cr3+,Cd2+ and Cu2+ ions by blue green algae Spirulina sp.kinetics,equilibrium and the mechanism of the process[J]. Chemosphere,2005,59(1):75-84.
[20]Adhiya J,Cai X,Sayre R T,et al. Binding of aqueous cadmium by the lyophilized biomass of Chlamydomonas reinhardtii[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects,2002,210(1):1-11.
[21]Das B K,Roy A,Koschorreck M,et al. Occurrence and role of algae and fungi in acid mine drainage environment with special reference to metals and sulfate immobilization[J]. Water Research,2009,43(4):883-894.
[22]刘静,张道勇,潘响亮,等. 藻菌生物膜胞外聚合物(EPS)与Al3+的配位作用机理[J]. 应用与环境生物学报,2009,15(3):347-350.
[23]聂国朝. 胞外聚合物(EPS)在藻菌生物膜去除污水中Cd的作用[J]. 中南民族大学学报(自然科学版),2003,22(4):16-19,24.
[24]Garcia-Meza J V,Barrangue C,Admiraal W. Biofilm formation by algae as a mechanism for surviving on mine tailings[J]. Environmental Toxicology and Chemistry,2005,24(3):573-581.
[25]Hassler C S,Behra R,Wilkinson K J. Impact of Zinc acclimation on bioaccumulation and homeostasis in Chlorella kesslerii[J]. Aquatic Toxicology,2005,74(2):139-149.
[26]Reddy G N,Prasad M. Heavy metal-binding proteins/peptides:occurrence,structure,synthesis and functions:a review[J]. Environmental and Experimental Botany,1990,30(3):251-264.
[27]Bacˇkor M,Pawlik-Skowrnska B,Budov J,et al. Response to copper and cadmium stress in wild-type and copper tolerant strains of the lichen alga Trebouxia erici:metal accumulation,toxicity and non-protein thiols[J]. Plant Growth Regulation,2007,52(1):17-27.
[28]Monteiro C M,Fonseca S C,Castro P,et al. Toxicity of cadmium and zinc on two microalgae,Scenedesmus obliquus and Desmodesmus pleiomorphus,from northern Portugal[J]. Journal of Applied Phycology,2011,23(1):97-103.
[29]Stockner J G,Antia N J. Phytoplankton adaptation to environmental stresses from toxicants,nutrients and pollutants a warning[J]. Journal of Fisheries Research Board of Canada,1976,33(9):2089-2096.
[30]Arunakumara kkiu,Xue C Z. Heavy metal bioaccumulation and toxicity with special reference to microalgae[J]. Journal of Ocean University of China,2008,7(1):60-64.
[31]Wong S L,Beaver J L. Algal bioassays to determine toxicity of metal mixtures[J]. Hydrobiology,1980,73(3):199-208.
[32]Silverberg B A,Stokes P M,Ferstenberg L B. Intranuclear complexes in a copper tolerant green alga[J]. Cell Biology,1976,69(1):210-214.
[33]Tsuji N,Hirayanagi N,Iwabe O,et al. Regulation of phytochelatin synthesis by zinc and cadmium in marine green alga,Dunaliella tertiolecta[J]. Phytochemistry,2003,62(3):453-459.
[34]Morelli E,Scarano G. Synthesis and stability of phytochelatins induced by cadmium and lead in the marine diatom Phaeodactylum tricornutum[J]. Marine Environmental Research,2001,52(4):383-395.
[35]Pawlik-Skowronska B,Pirszel J,Kalinowska R,et al. Arsenic availability,toxicity and direct role of GSH and phytochelatins in as detoxification in the green alga Stichococcus bacillaris[J]. Aquatic Toxicology,2004,70(3):201-212.
[36]Pirszel J,Pawlik B,Skowronski T. Cation exchange capacity of algae and cyanobacteria:a parameter of their metal sorption abilities[J]. Journal of Industrial Microbiology and Biotechnology,1995,14(3/4):319-322.
[37]Mohamed Z A. Removal of cadmium and manganese by a non-toxic strain of the freshwater cyanobacterium Gloeothece magna[J]. Water Research,2001,35(18):4405-4409.
[38]Hassen A,Saidi N,Cherif M,et al. Effects of heavy metals on Pseudomonas aeruginosa and Bacillus thuringiensis[J]. Bioresource Technology,1998,65(1/2):73-82.
[39]Khoshmanesh A,Lawson F,Prince I G. Cell surface area as a major parameter in the uptake of cadmium by unicellular green microalgae[J]. Chemical Engineering Journal,1997,65(1):13-19.
[40]Hein M,Pedersen M F,Sand-Jensen K. Size dependent nitrogen uptake in micro-and macroalgae[J]. Marine Ecology Progress Series,1995,118(1/2/3):247-253.
[41]Quigg A,Reinfelder J R,Fisher N S. Copper uptake kinetics in diverse marine phytoplankton[J]. Limnology and Oceanography,2006,51(2):893-899.
[42]Mehta S K,Gaur J P. Removal of Ni and Cu from single and binary metal solutions by free and immobilized Chlorella vulgaris[J]. European Journal of Protistology,2001,37(3):261-271.
[43]Romera E,Gonzalez F,Ballester A,et al. Comparative study of biosorption of heavy metals using different types of algae[J]. Bioresource Technology,2007,98(17):3344-3353.
[44]Bishnoi N R,Pant A,Garima P. Biosorption of copper from aqueous solution using algal biomass[J]. Journal of Scientific & Industrial Research,2004,63(10):813-816.
[45]Gong R M,Ding Y,Liu H J,et al. Lead biosorption and desorption by intact and pretreated Spirulina maxima biomass[J]. Chemosphere,2005,58(1):125-130.
[46]Singh R,Chadetrik R,Kumar R,et al. Biosorption optimization of lead2+,cadmium2+ and copper2+ using response surface methodology and applicability in isotherms and thermodynamics modeling[J]. Journal of Hazardous Materials,2010,174(3):623-634.
[47]吴文娟,李建宏,刘畅,等. 微囊藻水华的资源化利用:吸附重金属离子Cu2+、Cd2+和Ni2+的实验研究[J]. 湖泊科学,2014,26(3):417-422.
[48]Monteiro C M,Castro P M,Malcata F X. Metal uptake by microalgae:underlying mechanisms and practical applications[J]. Biotechnology Progress,2012,28(2):299-311.
[49]Brinza L,Dring M J,Gavrilescu M. Marine micro and macro algal species as biosorbents for heavy metals[J]. Environmental Engineering and Management Journal,2007,6(3):237-251.
[50]Dwivedi S. Bioremediation of heavy metal by algae:current and future perspective[J]. Journal of Advanced Laboratory Research in Biology,2012,3(3):195-199.
[51]Schiewer S,Wong M H. Ionic strength effects in biosorption of metals by marine algae[J]. Chemosphere,2000,41(1/2):271-282.
[52]Wilde W E,Benemann J R. Bioremoval of heavy metals by the use of microalgae[J]. Biotechnology Advances,1993,11(4):781-812.
[53]Rebhun S,Ben-Amotz A. Effect of NaCl concentration on cadmium uptake by the halophilic alga Dunaliella salina[J]. Marine Ecology Progress Series,1986,30:215-219.
[54]Bayo J. Kinetic studies for Cd(Ⅱ) biosorption from treated urban effluents by native grapefruit biomass (Citrus paradisi L.):the competitive effect of Pb(Ⅱ),Cu(Ⅱ) and Ni(Ⅱ)[J]. Chemical Engineering Journal,2012,191(19):278-287.
[55]Aksu Z,Doenmez G. Binary biosorption of cadmium(Ⅱ) and nickel(Ⅱ) onto dried Chlorella vulgaris:co-ion effect on monocomponent isotherm parameters[J]. Process Biochemistry,2006,41(4):860-868.
[56]Lee H S,Suh J H,Kim I B,et al. Effect of aluminum in two-metal biosorption by an algal biosorbent[J]. Minerals Engineering,2004,17(4):487-493.
[57]Vijayaraghvan K,Yun Y S. Bacterial biosorbents and biosoprption[J]. Biotechnology Advances,2008,26(3):266-291.
[58]Mehta S K,Gaur J P. Use of algae for removing heavy metal ions from wastewater:progress and prospects[J]. Critical Reviews in Biotechnology,2005,25(3):113-152.
[59]Aksu Z. Determination of the equilibrium,kinetic and thermodynamic parameters of the batch biosorption of nickel(Ⅱ) ions onto Chlorella vulgaris[J]. Process Biochemistry,2002,38(1):89-99.
[60]Lamaia C,Kruatrachuea M,Pokethitiyooka P,et al. Toxicity and accumulation of lead and cadmium in the filamentous green alga Cladophora fracta(O.F.Muller ex Vahl)Kutzing:a laboratory study[J]. Science Asia,2005,31(2):121-127.
[61]李英敏,杨海波,刘艳,等. 小球藻吸附水中Pb2+影响因素的初步研究[J]. 生物技术,2002,12(1):12-13.
[62]江东,李长玲,黄翔鹄,等. 波吉卵囊藻(Oocystis borgei)对Cu2+、Zn2+吸附研究[J]. 广东海洋大学学报,2011,31(6):50-54.
[63]Subramanian V V,Sivasubramanian V,Gowrinathan K P. Uptake and recovery of heavy metals by immobilized cells of Aphasocapsa polchra (Kütz.) Rabenh[J]. Journal of Environmental Science & Health Part A,1994,29(9):1723-1733.
[64]Taziki M,Ahmadzadeh H,Murry M A. Nitrate and nitrite removal from wastewater using algae[J]. Current Opinion in Biotechnology,2015,4(4):426-440.
[65]Sheng P X,Ting Y P,Chen J P. Biosorption of heavy metal ions(Pb,Cu,and Cd)from aqueous solutions by the marine alga Sargassum sp.in single and multiple metal systems[J]. Industrial & Engineering Chemistry Research,2007,46(8):2438-2444.
[66]Utomo H D,Tan K X D,Zhi Y D C,et al. Biosorption of heavy metal by algae biomass in surface water[J]. Journal of Environmental Protection,2016,7(11):1547-1560.
[67]Zeraatkar A K,Ahmadzadeh H,Talebi A F,et al. Potential use of algae for heavy metal bioremediation,a critical review[J]. Journal of Environmental Management,2016,181:817-831.
[68]马骏驰. 亚心形四爿藻对重金属离子污染物的净化作用[J]. 安徽农业科学,2017,45(15):73-75.
[69]聂利华,李训仕,林壮森,等. 拟柱胞藻对水体重金属的生物富集作用研究[J]. 水生态学杂志,2017,38(1):41-45.
[70]孙东红,于红凤,邹宁. 鱼腥藻对重金属污水中Zn2+的吸附研究[J]. 安徽农业科学,2015,43(36):164-166.
[71]周定. 固定化细胞在废水处理中的应用及前景[J]. 环境科学,1993,14(5):51-54.
[72]郑蕾,田禹,孙德智. pH值对活性污泥胞外聚合物分子结构和表面特征影响研究[J]. 环境科学,2007,28(7):1507-1511.
[73]陈家武,刘唐兴,姚季伦,等. 固定化梅尼小环藻处理含Cd废水的研究[J]. 湖南农业科学,2016,27(2):60-63.
[74]李翔宇,王应军,朱雪梅,等. 固定化鼠尾藻Sargassum thunbergii对水中重金属锌的生物吸附效应[J]. 环境工程学报,2017,11(5):2812-2818.
[75]陈家武,邓沛怡,程明玲,等. 藻类吸附缓解稻田重金属污染的研究[J]. 湖南农业科学,2014,5(12):52-55.
[76]沈德中,王宏康,罗厚枚,等. 铜、镍、铅、锌4种重金属对水田土壤藻类的综合效应[J]. 中国环境科学,1994,14(4):277-281.
[77]周亚强,吴园文,吴智仁,等. 一种修复重金属污染土壤的方法:103143559A[P]. 2013-06-12.
[78]Surasak S,Samuel S,Desh V,et al. Molecular mechanmisms of proline mediated tolerance to toxic heavy metal in transgenic microalgae[J]. Plant Cell,2002,14(11):2837-2847.
[79]Rajamani S,Siripornadulsil S,Falcao V,et al. Phycorremediation of heavy metals using transgenic microalgae[J]. Advances in Experimental Medicine and Biology,2007,616(1):99-109.
[80]Huang C C,Chen M W,Hsieh J L,et al. Expression of mercuric reductase from Bacillus megaterium MB1 in eukaryotic microalga Chlorella sp. DT:an approach for mercury phytoremediation[J]. Applied Microbiology and Biotechnology,2006,72(1):197-205.
[81]Gonzalez L E,Bashan Y. Increased growth of the microalgae Chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant growth-promoting bacteria Azospirillum brasilense[J]. Applied Environment Microbiology,2000,66(4):1527-1531.
[82]De-Bashan L E,Hernandez J P,Morey T,et al. Microalgae growth promoting bacteria as “helpers” for microalgae:a novel approach for removing ammonium and phosphorus from municipal wastewater[J]. Water Research,2004,38(2):466-474.
[83]Park J B K,Craggs R J,Shilton A N. Wastewater treatment high rate algal ponds for biofuel production[J]. Bioresource Technology,2011,102:35-42.
[84]Craggs R J,Heubeck S,Lundquist T J,et al. Algal biofuels from wastewater treatment high rate algal ponds[J]. Water Science and Technology,2011,63(4):660-665.

相似文献/References:

[1]蒯广东,李轶,方晓航,等.硫氧化菌生物淋滤修复重金属污染研究进展[J].江苏农业科学,2013,41(05):335.
 Kuai Guangdong,et al.Research progress on heavy metal pollution restoring by bioleaching of sulfur-oxidizing bacteria[J].Jiangsu Agricultural Sciences,2013,41(21):335.
[2]赖颖,赵锦慧,杨同文,等.发酵性结合酵母菌对重金属吸附能力的研究[J].江苏农业科学,2014,42(11):398.
 Lai Ying,et al(98).Study on adsorption capacity of fermentation of yeast to heavy metals[J].Jiangsu Agricultural Sciences,2014,42(21):398.
[3]吴少飞,丁竹红,胡忻,等.EDTA及其与柠檬酸交替对污染水稻土壤重金属元素的分步连续提取研究[J].江苏农业科学,2014,42(11):369.
 Wu Shaofei,et al(9).Study on sequential extraction of heavy metal from contaminated paddy soil using EDTA and citric acid[J].Jiangsu Agricultural Sciences,2014,42(21):369.
[4]李洋,游少鸿,林子雨,等.菖蒲对5种重金属富集能力的比较[J].江苏农业科学,2014,42(11):383.
 Li Yang,et al(8).Comparative study on enrichment capacity of calamus to five kinds of heavy metals[J].Jiangsu Agricultural Sciences,2014,42(21):383.
[5]周秦,黄剑林.ICP-MS法与石墨炉原子吸收法测定水中重金属含量的比较[J].江苏农业科学,2013,41(06):283.
 Zhou Qin,et al.Comparison of ICP-MS method and graphite furnace atomic absorption spectrometry in determination of heavy metals contents in water[J].Jiangsu Agricultural Sciences,2013,41(21):283.
[6]李恒,龙柱,冯群策.废纸脱墨污泥蚯蚓生物处理效应[J].江苏农业科学,2014,42(09):358.
 Li Heng,et al.Biological treatment effect of waste paper deinking sludge by earthworm[J].Jiangsu Agricultural Sciences,2014,42(21):358.
[7]刘贵巧,王永霞,王建明,等.4种食用菌中重金属含量及食用安全评价[J].江苏农业科学,2014,42(09):268.
 Liu Guiqiao,et al.Heavy metal contents and food safety assessment of 4 kinds of edible fungi[J].Jiangsu Agricultural Sciences,2014,42(21):268.
[8]邹烨燔,李勇,赵志忠,等.东寨港红树林沉积物重金属的垂向分异及污染评价[J].江苏农业科学,2014,42(08):327.
 Zou Yefan,et al.Vertical distribution and pollution assessment of heavy metals in sediment of Dongzhai Port mangroves[J].Jiangsu Agricultural Sciences,2014,42(21):327.
[9]牟新利,郭佳,刘少达,等.三峡库区农林土壤重金属形态分布与污染评价[J].江苏农业科学,2013,41(09):314.
 Mou Xinli,et al.Distribution of heave metals and pollution assessment of agriculture and forest soils in Three Gorges Reservoir Area[J].Jiangsu Agricultural Sciences,2013,41(21):314.
[10]潘雪姣,李志明,陈青君,等.不同比例沼渣作为覆土材料栽培双孢菇试验[J].江苏农业科学,2016,44(03):179.
 Pan Xuejiao,et al.Cultivation experiment of Agaricus bisporus with different proportion of biogas residues as casing soil[J].Jiangsu Agricultural Sciences,2016,44(21):179.

备注/Memo

备注/Memo:
收稿日期:2018-07-20
基金项目:国家自然科学基金(编号:31370217);江苏省高校优势学科建设工程(编号:PAPD)。
作者简介:杨荧(1993—),女,江苏连云港人,硕士,主要从事藻类生理学的研究。E-mail:yangying_regina@sina.com。
通信作者:李建宏,博士,教授,主要从事藻类生理生态研究。E-mail:lijianhong@njnu.edu.cn。
更新日期/Last Update: 2019-11-05