[1]Zipfel C. Early molecular events in PAMP-triggered immunity[J]. Current Opinion in Plant Biology,2009,12(4):414-420.
[2]Kourelis J,van der Hoorn R A L. Defended to the nines:25 years of resistance gene cloning identifies nine mechanisms for R protein function[J]. The Plant Cell,2018,30(2):285-299.
[3]van der Weerden N L,Lay F T. The plant defensin,NaD1,enters the cytoplasm of Fusarium oxysporum hyphae[J]. The Journal of Biological Chemistry,2008,283(21):14445-14452.
[4]Silva M S,Arraes F B M,Campos M D A,et al. Review:potential biotechnological assets related to plant immunity modulation applicable in engineering disease-resistant crops[J]. Plant Science,2018,270:72-84.
[5]Ng T B,Wong J H X,Wang H. Recent progress in research on ribosome inactivating proteins[J]. Current Protein & Peptide Science,2010,11(1):37-53.
[6]Muthamilarasan M,Prasad M. Plant innate immunity:An updated insight into defense mechanism[J]. Journal of Biosciences,2013,38(2):433-449.
[7]Weiberg A,Wang M,Lin F M,et al. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways[J]. Science,2013,342(6154):118-123.
[8]Wang M,Weiberg A,Lin F M,et al. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection[J]. Nature Plants,2016,2(19):16151.
[9]Zhang T,Zhao Y L,Zhao J H,et al. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen[J]. Nature Plants,2016,2(10):16153.
[10]Tyagi S,Kumar R,Kumar V,et al. Engineering disease resistant plants through CRISPR-Cas9 technology[J]. Crops & Food,2021,12(1):125-144.
[11]Kachroo A,Vincelli P,Kachroo P. Signaling mechanisms underlying resistance responses:what have we learned,and how is it being applied?[J]. Phytopathology,2017,107(12):1452-1461.
[12]Andersen E,Ali S,Byamukama E,et al. Disease resistance mechanisms in plants[J]. Genes,2018,9(7):339.
[13]Tyagi S,Mulla S I,Lee K J,et al. VOCs-mediated hormonal signaling and crosstalk with plant growth promoting microbes[J]. Critical Reviews in Biotechnology,2018,38(8):1277-1296.
[14]Oskar M,Buchwald W,Nawrot R. Plant defense responses against viral and bacterial pathogen infections.Focus on RNA-binding proteins(RBPs)[J]. Herba Polonica,2015,60(4):60-73.
[15]Almagro L,Ros L V G,Belchi-Navarro S,et al. Class Ⅲ peroxidases in plant defence reactions[J]. Journal of Experimental Botany,2009,60(2):377-390.
[16]Dong O X,Ronald P C. Genetic engineering for disease resistance in plants:recent progress and future perspectives[J]. Plant Physiology,2019,180(1):26-38.
[17]Rosa E,Woestmann L,Biere A,et al. A plant pathogen modulates the effects of secondary metabolites on the performance and immune function of an insect herbivore[J]. Oikos,2018,127(10):1539-1549.
[18]Passardi F,Cosio C,Penel C,et al. Peroxidases have more functions than a Swiss army knife[J]. Plant Cell Reports,2005,24(5):255-265.
[19]Kadota Y,Sklenar J,Derbyshire P,et al. Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity[J]. Molecular Cell,2014,54(1):43-55.
[20]Levine A,Tenhaken R,Dixon R,et al. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response[J]. Cell,1994,79(4):583-593.
[21]Lamb C,Dixon R A. The oxidative burst in plant disease resistance[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1997,48(1):251-275.
[22]Melotto M,Underwood W,He S Y. Role of stomata in plant innate immunity and foliar bacterial diseases[J]. Annual Review of Phytopathology,2008,46(2):101-122.
[23]Melotto M,Underwood W,Koczan J,et al. Plant stomata function in innate immunity against bacterial invasion[J]. Cell,2006,126(5):969-980.
[24]Bellincampi D,Cervone F,Lionetti V. Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions[J]. Frontiers in Plant Science,2014,5:228.
[25]Kang Z,Buchenauer H. Ultrastructural and cytochemical studies on cellulose,xylan and pectin degradation in wheat spikes infected by Fusarium culmorum[J]. Journal of Phytopathology,2000,148(5):263-275.
[26]Wanjiru W M,Kang Z S,Buchenauer H. Importance of cell wall degrading enzymes produced by Fusarium graminearum during infection of wheat heads[J]. European Journal of Plant Pathology,2002,108(8):803-810.
[27]Anguelova-Merhar V S,Westhuizen A J,Pretorius Z A. β-1,3-Glucanase and chitinase activities and the resistance response of wheat to leaf rust[J]. Journal of Phytopathology,2008,149(7/8):381-384.
[28]Kong L R,Anderson J M,Ohm H W. Induction of wheat defense and stress-related genes in response to Fusarium graminearum[J]. Genome,2005,48(1):29-40.
[29]Singh A,Kirubakaran S I,Sakthivel N.Heterologous expression of new antifungal chitinase from wheat[J]. Protein Expression & Purification,2007,56(1):100-109.
[30]Doxey A C,Yaish Mahmoud W F,Moffatt Barbara A,et al. Functional divergence in the arabidopsis β-1,3-glucanase gene family inferred by phylogenetic reconstruction of expression states[J]. Molecular Biology & Evolution,2007,24(4):1045-1055.
[31]Jashni M K,Mehrabi R,Collemare J,et al. The battle in the apoplast:further insights into the roles of proteases and their inhibitors in plant-pathogen interactions[J]. Frontiers in Plant Science,2015,6:584.
[32]Thomas E L,van der Hoorn R A L. Ten prominent host proteases in Plant-Pathogen interactions[J]. International Journal of Molecular Sciences,2018,19(2):639.
[33]Pekkarinen A I,Longstaff C,Jones B L. Kinetics of the inhibition of Fusarium serine proteinases by barley (Hordeum vulgare L.) inhibitors[J]. Journal of Agricultural and Food Chemistry,2007,55(7):2736-2742.
[34]Franco O L,Rigden D J,Melo F R,et al. Plant α-amylase inhibitors and their interaction with insect α-amylases[J]. European Journal of Biochemistry,2002,269(2):397-412.
[35]Franco O L,Rigden D J,Melo F R,et al. Activity of wheat α-amylase inhibitors towards bruchid α-amylases and structural explanation of observed specificities[J]. European Journal of Biochemistry,2000,267(8):2166-2173.
[36]Reisige K,Gorzelanny C,Daniels U,et al. The C28 aldehyde octacosanal is a morphogenetically active component involved in host plant recognition and infection structure differentiation in the wheat stem rust fungus[J]. Physiol Molec Plant Pathol,2006,68(1/2/3):33-40.
[37]Tsuba M,Katagiri C,Takeuchi Y,et al. Chemical factors of the leaf surface involved in the morphogenesis of Blumeria graminis[J]. Physiological & Molecular Plant Pathology,2002,60(2):51-57.
[38]Finkina E I,Melnikova D N,Bogdanov I V,et al. Lipid transfer proteins as components of the plant innate immune system:structure,functions,and applications[J]. Acta Naturae,2016,8(2):47-61.
[39]Desaki Y,Miya A,Venkatesh B,et al. Bacterial lipopolysaccharides induce defense responses associated with programmed cell death in rice cells[J]. Plant & Cell Physiology,2006,47(11):1530-1540.
[40]Canonne J,Froidure-Nicolas S,Rivas S. Phospholipases in action during plant defense signaling[J]. Plant Signaling & Behavior,2011,6(1):13-18.
[41]Montillet J L,Leonhardt N,Mondy S,et al. An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis[J]. PLoS Biology,2013,11(3):e1001513.
[42]Zhao J A. Phospholipase D and phosphatidic acid in plant defence response:from protein-protein and lipid-protein interactions to hormone signalling[J]. Journal of Experimental Botany,2015,66(7):1721-1736.
[43]Rentel M C,Lecourieux D,Ouaked F,et al. OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis[J]. Nature,2004,427(6977):858-861.
[44]Terras F R,Eggermont K,Kovaleva V,et al. Small cysteine-rich antifungal proteins from radish:their role in host defense[J]. Plant Cell,1995,7(5):573-588.
[45]van der Weerden N L,Hancock R E W,Anderson M A. Permeabilization of fungal hyphae by the plant defensin NaD1 occurs through a cell wall-dependent process[J]. The Journal of Biological Chemistry,2010,285(48):37513-37520.
[46]Koike M,Okamoto T,Tsuda S,et al. A novel plant defensin-like gene of winter wheat is specifically induced during cold acclimation[J]. Biochemical and Biophysical Research Communications,2002,298(1):46-53.
[47]Silverstein K A,Graham M A,Paape T D,et al. Genome organization of more than 300 defensin-like genes in Arabidopsis[J]. Plant Physiology,2005,138(2):600-610.
[48]Graham M A,Silverstein K A,Cannon S B,et al. Computational identification and characterization of novel genes from legumes[J]. Plant Physiology,2004,135(3):1179-1197.
[49]van der Weerden N L,Anderson M A. Plant defensins:common fold,multiple functions[J]. Fungal Biology Reviews,2013,26(4):121-131.
[50]Wang S Y,Rao P F,Ye X Y. Isolation and biochemical characterization of a novel leguminous defense peptide with antifungal and antiproliferative potency[J]. Applied Microbiology and Biotechnology,2009,82(1):79-86.
[51]Osmond R I W,Hrmova M,Fontaine F,et al. Binding interactions between barley thaumatin-like proteins and (1,3)-β-D-glucans. Kinetics,specificity,structural analysis and biological implications[J]. European Journal of Biochemistry,2001,268(15):4190-4199.
[52]Trümper C,Paffenholz K,Smit I,et al. Identification of regulated proteins in naked barley grains (Hordeum vulgare nudum) after Fusarium graminearum infection at different grain ripening stages[J]. Journal of Proteomics,2016,133:86-92.
[53]Singh A,Singh I K. Role of pathogenesis-related (PR) proteins in plant defense mechanism[M]//Archana S,Indrakant K S. Molecular aspects of plant-pathogen interaction. Berlin:Springer,2018,12(1):265-281.
[54]van Loon L C,Rep M,Pieterse C M. Significance of inducible defense-related proteins in infected plants[J]. Annual Review of Phytopathology,2006,44(1):135-162.
[55]Sinha M,Singh R P,Kushwaha G S,et al. Current overview of allergens of plant pathogenesis related protein families[J]. The Scientific World Journal,2014:543195.
[56]Gj K,Drurey C,Schoonbeek H J,et al. Resistance of arabidopsis thaliana to the green peach aphid,myzus persicae,involves camalexin and is regulated by microRNAs[J]. The New Phytologist,2013,198(4):1178-1190.
[57]Xu J,Li Y,Wang Y,et al. Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis[J]. The Journal of Biological Chemistry,2008,283(40):26996-27006.
[58]Ahuja I,Kissen R,Bones A M. Phytoalexins in defense against pathogens[J]. Trends in Plant Science,2012,17(2):73-90.
[59]Mao G H,Meng X Z,Liu Y D,et al. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis[J]. Plant Cell,2011,23(4):1639-1653.
[60]González-Lamothe R,Mitchell G,Gattuso M,et al. Plant antimicrobial agents and their effects on plant and human pathogens[J]. International Journal of Molecular Sciences,2009,10(8):3400-3419.
[61]Wu H,Pratley J,Lemerle D,et al. Allelopathy in wheat(Triticum aestivum)[J]. Annals of Applied Biology,2006,139(1):1-9.
[62]Adhikari K B,Tanwir F,Gregersen P L,et al. Benzoxazinoids:cereal phytochemicals with putative therapeutic and health-protecting properties[J]. Molecular Nutrition & Food Research,2015,59(7):1324-1338.
[63]Martinez D,Loening U E,Graham M C. Impacts of glyphosate-based herbicides on disease resistance and health of crops:a review[J]. Environmental Sciences Europe,2018,30(1):2.
[64]Turlings T C J,McCall P J,Alborn H T,et al. An elicitor in Caterpillar oral secretions that induces corn seedlings to emit chemical signals attractive to parasitic wasps[J]. Journal of Chemical Ecology,1993,19(3):411-425.
[65]Agrawal A A,Konno K. Latex:A model for understanding mechanisms,ecology,and evolution of plant defense against herbivory[J]. Annual Review of Ecology Evolution and Systematics,2009,40(1):311-331.
[66]McKay S A B,Hunter W L,Godard K A,et al. Insect attack and wounding induce traumatic resin duct development and gene expression of (—)-pinene synthase in Sitka spruce[J]. Plant Physiology,2003,133(1):368-378.
[67]Campos-Soriano L,García-Martínez J,Segundo B S. The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defence-related genes in rice leaves and confers resistance to pathogen infection[J]. Molecular Plant Pathology,2012,13(6):579-592.
[68]Plett J M,Daguerre Y,Wittulsky S,et al. Effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses jasmonic acid (JA) responsive genes[J]. Proceedings of the National Academy of Sciences of the United States of America,2014,111(22):8299-8304.
[69]Cárdenas L,Martínez A,Sánchez F,et al. Fast,transient and specific intracellular ROS changes in living root hair cells responding to Nod factors (NFs)[J]. The Plant Journal,2008,56(5):802-813.
[70]Mitra R M,Long S R. Plant and bacterial symbiotic mutants define three transcriptionally distinct stages in the development of the Medicago truncatula/Sinorhizobium meliloti symbiosis[J]. Plant Physiology,2004,134(2):595-604.
[71]Bentham A R,de la Concepcion J C,Mukhi N,et al. A molecular roadmap to the plant immune system[J]. Journal of Biological Chemistry,2020,295(44):14916-14935.
[72]Wang L,Long X Y,Chern M,et al. Understanding the molecular mechanisms of trade-offs between plant growth and immunity[J]. Science China. Life Sciences,2021,64(2):234-241.
[1]刘亚楠,习丙文,梁利国,等.水产动物病原菌拮抗菌的研究进展[J].江苏农业科学,2013,41(05):208.
Liu Yanan,et al.Research progress of antagonistic bacteria of aquatic animal pathogens[J].Jiangsu Agricultural Sciences,2013,41(19):208.
[2]涂勇.雪莲果镰刀叶斑病病原菌鉴定及杀菌剂室内毒力测定[J].江苏农业科学,2014,42(12):179.
Tu Yong.Identification of yacon sickle leaf spot disease pathogen and determination of fungicide indoor toxicity[J].Jiangsu Agricultural Sciences,2014,42(19):179.
[3]彭陈,何晓兰,黄益洪,等.高粱链格孢叶斑病病原菌鉴定[J].江苏农业科学,2014,42(11):165.
Peng Chen,et al().Identification of pathogen of Alternaria leaf spot in sorghum[J].Jiangsu Agricultural Sciences,2014,42(19):165.
[4]王晓敏,张燕,龚德勇.贵州续随子主要病害病原菌的分离鉴定[J].江苏农业科学,2013,41(09):121.
Wang Xiaomin,et al.Isolation and identification of major disease pathogens of Euphorbia lathyris in Guizhou Province[J].Jiangsu Agricultural Sciences,2013,41(19):121.
[5]孙梅,张维娜,高亮,等.解淀粉芽孢杆菌JSSW-LA的分离鉴定及对病原菌拮抗特性[J].江苏农业科学,2016,44(04):275.
Sun Mei,et al.Isolation, identification and pathogen antagonist properties of Bacillus amyloliquefaciens JSSW-LA[J].Jiangsu Agricultural Sciences,2016,44(19):275.
[6]王军,彭永帅,霍军,等.郑州市奶牛隐性乳腺炎病原菌的分离与鉴定[J].江苏农业科学,2016,44(09):254.
Wang Jun,et al.Isolation and identification of subclinical mastitis of dairy cattle in Zhengzhou City[J].Jiangsu Agricultural Sciences,2016,44(19):254.
[7]滕涛,梁利国,谢骏.大宗淡水鱼细菌性疾病研究进展[J].江苏农业科学,2015,43(11):8.
Teng Tao,et al.Research progress on pathogenic bacteria of conventional freshwater fish[J].Jiangsu Agricultural Sciences,2015,43(19):8.
[8]康立超,卢春霞,刘长彬.天山北坡奶牛乳房炎病原菌的分离鉴定[J].江苏农业科学,2015,43(10):271.
Kang Lichao.Separation and identification of mastitis pathogenic bacteria from cow in northern slope of Tianshan Mountain[J].Jiangsu Agricultural Sciences,2015,43(19):271.
[9]周颖,张艳明,江洁,等.竹柏叶部真菌性病害的病原鉴定[J].江苏农业科学,2015,43(08):125.
Zhou Ying,et al.Identification of fungal diseases pathogen from Podocarpus nagi leaf[J].Jiangsu Agricultural Sciences,2015,43(19):125.
[10]李婉莹,姚远,高增贵,等.玉米田常用除草剂对主要土传病害病原菌生长的影响[J].江苏农业科学,2014,42(06):137.
Li Wanying,et al.Effect of common herbicides in corn fields on growth of main soil-borne diseases pathogens[J].Jiangsu Agricultural Sciences,2014,42(19):137.