|本期目录/Table of Contents|

[1]徐晗,鄢紫薇,覃卫林,等.生物质炭调控辣椒连作障碍研究进展[J].江苏农业科学,2023,51(6):23-31.
 Xu Han,et al.Research progress of biochar regulating continuous cropping obstacle of pepper[J].Jiangsu Agricultural Sciences,2023,51(6):23-31.
点击复制

生物质炭调控辣椒连作障碍研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第6期
页码:
23-31
栏目:
专论与综述
出版日期:
2023-03-20

文章信息/Info

Title:
Research progress of biochar regulating continuous cropping obstacle of pepper
作者:
徐晗1 鄢紫薇1 覃卫林2 邢丹3 王玺1 郑志杰1 林杉1
1.华中农业大学资源与环境学院/农业农村部长江中下游耕地保育重点实验室,湖北武汉 430070;2.湖北省长阳土家族自治县农业农村局,湖北宜昌 443500; 3.贵州省农业科学院辣椒研究所,贵州贵阳 550006
Author(s):
Xu Hanet al
关键词:
生物质炭辣椒连作障碍酸性土壤改良土壤养分化感作用
Keywords:
-
分类号:
S641.306
DOI:
-
文献标志码:
A
摘要:
随着我国农业的发展,由于长期连作引起的生长不良、产量下降且品质变差等连作障碍问题日益影响了我国农产品的经济效益,并造成食品安全风险。我国是辣椒种植大国,由于不合理的栽培和管理措施,辣椒连作障碍已经成为种植区的共性问题。辣椒连作障碍表现为土壤严重酸化、土壤养分失衡并且辣椒出现严重病虫害,因此对辣椒连作土壤进行修复是解决辣椒连作障碍的关键。近年来,生物质炭因其具有独特的结构以及吸附性、碱性等性质,在农业生产中作为一种重要的土壤改良剂得到广泛的关注与应用,故利用生物质炭作为调理剂来缓解辣椒连作障碍具有一定的潜力。本文总结了辣椒连作障碍的危害以及在不同方面的产生原因,总结了为缓解辣椒连作障碍所提出的农艺措施和物理化学调控方法以及这些方法的局限性,综述了生物质炭在改良连作酸化土壤、调控失衡土壤养分、改善土壤微生物群落结构、抑制辣椒疫病和抑制连作辣椒的自毒作用5个方面的研究进展,分析了利用生物质炭缓解辣椒连作障碍的应用潜力,并对未来生物质炭应用于连作土壤改良的研究作出展望。
Abstract:
-

参考文献/References:

[1]邹学校,马艳青,戴雄泽,等. 辣椒在中国的传播与产业发展[J]. 园艺学报,2020,47(9):1715-1726.
[2]Mazzola M,Manici L M. Apple replant disease:role of microbial ecology in cause and control[J]. Annual Review of Phytopathology,2012,50:45-65.
[3]高晶霞,谢华. 不同连作年限下辣椒的光合特性与果实品质[J]. 北方园艺,2021(19):48-53.
[4]Tian Y Q,Zhang X Y,Liu J,et al. Microbial properties of rhizosphere soils as affected by rotation,grafting,and soil sterilization in intensive vegetable production systems[J]. Scientia Horticulturae,2009,123(2):139-147.
[5]Min J,Lu K P,Sun H J,et al. Global warming potential in an intensive vegetable cropping system as affected by crop rotation and nitrogen rate[J]. Clean-Soil,Air,Water,2016,44(7):766-774.
[6]Luan H A,Gao W,Huang S W,et al. Partial substitution of chemical fertilizer with organic amendments affects soil organic carbon composition and stability in a greenhouse vegetable production system[J]. Soil & Tillage Research,2019,191:185-196.
[7]Guo H C,Zhao X,Rosskopf E N,et al. Impacts of anaerobic soil disinfestation and chemical fumigation on soil microbial communities in field tomato production system[J]. Applied Soil Ecology,2018,126:165-173.
[8]Myers M R,King G M. Isolation and characterization of Acidobacterium ailaaui sp.nov.,a novel member of Acidobacteria subdivision 1,from a geothermally heated Hawaiian microbial mat[J]. International Journal of Systematic and Evolutionary Microbiology,2016,66(12):5328-5335.
[9]Fehrmann W. Replant disease and its importance for fruit production[J]. Acta Horticulturae,1988,233(2):17-20.
[10]Guo J H,Liu X J,Zhang Y,et al. Significant acidification in major Chinese croplands[J]. Science,2010,327(5968):1008-1010.
[11]于迪. 嫁接克服设施辣椒连作障碍效果研究初探[D]. 郑州:河南农业大学,2015:30-31.
[12]刘来,孙锦,郭世荣,等. 大棚辣椒连作土壤养分和离子变化与酸化的关系[J]. 中国农学通报,2013,29(16):100-105.
[13]郭红伟. 连作对土壤性状和辣椒生育、生理代谢的影响[D]. 南京:南京农业大学,2011:20-23.
[14]Cesarano G,Zotti M,Antignani V,et al. Soil sickness and negative plant-soil feedback:a reappraisal of hypotheses[J]. Journal of Plant Pathology,2017,99(3):545-570.
[15]郭红伟,郭世荣,刘来,等. 辣椒连作对土壤理化性状、植株生理抗性及离子吸收的影响[J]. 土壤,2012,44(6):1041-1047.
[16]周倩. 连作对线辣椒矿质元素吸收的影响[D]. 杨凌:西北农林科技大学,2011:30-32.
[17]Tsuchiya K,Lee J W,Hoshina T. Allelopathic potential of red pepper (Capsicum annuum L.) [J]. Japan Agricultural Research Quarterly,1994,28(1):1-11.
[18]江山,赵尊练,臧纱纱,等. 线辣椒根系分泌物中几种化感物质对其种子萌发和幼苗生长的影响[J]. 西北农业学报,2013,22(12):137-143.
[19]王广印,周秀梅,谢玉会,等. 辣椒植株水浸液对辣椒种子萌发的自毒作用[J]. 上海交通大学学报(农业科学版),2008,26(5):407-410.
[20]耿广东,张素勤,程智慧. 辣椒根系分泌物的化感作用及其化感物质分析[J]. 园艺学报,2009,36(6):873-878.
[21]周震峰,王建超,饶潇潇. 三种设施蔬菜对邻苯二甲酸酯的吸收累积特征[J]. 农业现代化研究,2015,36(6):1086-1090.
[22]任旭琴,高军,陈伯清,等. 辣椒DBP/DIBP胁迫及其修复剂优化和机理研究[J]. 农业环境科学学报,2015,34(6):1121-1126.
[23]van Bruggen A H C,Goss E M,Havelaar A,et al. One Health-Cycling of diverse microbial communities as a connecting force for soil,plant,animal,human and ecosystem health[J]. Science of the Total Environment,2019,664:927-937.
[24]van Bruggen A H C,Finckh M R. Plant diseases and management approaches in organic farming systems[J]. Annual Review of Phytopathology,2016,54:25-54.
[25]Wu Z J,Xie Z,Yang L,et al. Identification of autotoxins from root exudates of Lanzhou lily (Lilium davidii var. unicolor)[J]. Allelopathy Journal,2015,35(1):35-48.
[26]刘来,黄保健,孙锦,等. 大棚辣椒连作土壤微生物数量、酶活性与土壤肥力的关系[J]. 中国土壤与肥料,2013(2):5-10.
[27]何志刚,王秀娟,董环,等. 日光温室辣椒连作不同年限土壤微生物种群变化及酶活性研究[J]. 中国土壤与肥料,2013(1):38-42.
[28]Brennan E B,Acosta-Martinez V. Cover cropping frequency is the main driver of soil microbial changes during six years of organic vegetable production[J]. Soil Biology and Biochemistry,2017,109:188-204.
[29]李天来,杨丽娟. 作物连作障碍的克服——难解的问题[J]. 中国农业科学,2016,49(5):916-918.
[30]Fan P S,Chen G,Xu D L,et al. Study on obstacles to continuous cropping of vegetables and soil remediation technology[J]. Asian Agricultural Research,2016,8(2):64-65,72.
[31]安曈昕,湛方栋,李旺,等. 旱坡地间作群体对作物根际微生物数量的影响[J]. 干旱地区农业研究,2017,35(5):102-106,150.
[32]吴宏亮,康建宏,陈阜,等. 不同轮作模式对砂田土壤微生物区系及理化性状的影响[J]. 中国生态农业学报,2013,21(6):674-680.
[33]江冰冰,张彧,郭存武,等. 韭菜和辣椒间作对辣椒疫病的防治效果及其化感机理[J]. 植物保护学报,2017,44(1):145-151.
[34]Sumner D R,Minton N A,Brenneman T B,et al. Root diseases and nematodes in bahiagrass-vegetable rotations[J]. Plant Disease,1999,83(1):55-59.
[35]刘业霞,姜飞,张宁,等. 嫁接辣椒对青枯病的抗性及其与渗透调节物质的关系[J]. 园艺学报,2011,38(5):903-910
[36]杨茹薇,秦勇,吴慧,等. 辣椒嫁接抗疫病效果研究[J]. 新疆农业大学学报,2010,33(1):27-30.
[37]Aminifard M H,Bayat H. Influence of different rates of nitrogen fertilizer on growth,yield and fruit quality of sweet pepper(Capsicum annum L.var. California Wander)[J]. Journal of Horticulture and Postharvest Research,2018,1(2):105-114.
[38]赵尊练,史联联,阎玉让,等. 克服线辣椒连作障碍的施肥方案研究[J]. 干旱地区农业研究,2006,24(5):77-80,114.
[39]曹云,常志州,马艳,等. 沼液施用对辣椒疫病的防治效果及对土壤生物学特性的影响[J]. 中国农业科学,2013,46(3):507-516.
[40]Ding J L,Jiang X,Ma M C,et al. Effect of 35 years inorganic fertilizer and manure amendment on structure of bacterial and archaeal communities in black soil of northeast China[J]. Applied Soil Ecology,2016,105:187-195.
[41]Meng T Z,Ren G D,Wang G F,et al. Impacts on soil microbial characteristics and their restorability with different soil disinfestation approaches in intensively cropped greenhouse soils[J]. Applied Microbiology and Biotechnology,2019,103(15):6369-6383.
[42]侯永侠,周宝利,吴晓玲,等. 土壤灭菌对辣椒抗连作障碍效果[J]. 生态学杂志,2006,25(3):340-342.
[43]王光飞,马艳,常志州,等. 淹水改良土壤性状及对辣椒疫病的防效研究[J]. 水土保持学报,2013,27(2):209-214.
[44]张福建,陈昱,杨磊,等. 施用生物质炭和生石灰对连作辣椒生长的影响[J]. 核农学报,2019,33(6):1240-1247.
[45]任旭琴,高军,陈伯清,等. 凹土对辣椒自毒作用修复的生理生化机制研究[J]. 土壤,2014,46(5):908-912.
[46]Kloepper J W,Ryu C M,Zhang S A.Induced systemic resistance and promotion of plant growth by Bacillus spp.[J]. Phytopathology,2004,94(11):1259-1266.
[47]高晶霞,牛勇琴,吴雪梅,等. 微生物菌剂对拱棚连作辣椒生长、产量及品质的影响[J]. 北方园艺,2018(19):59-64.
[48]郭树根,沈怡斐,姚燕来,等. 生物强化还原处理防控辣椒连作障碍[J]. 浙江农业科学,2018,59(9):1674-1679.
[49]顾志光,马艳,安霞,等. 麦秸淹水处理对连作土壤性状和辣椒疫病田间防控效果的影响[J]. 农业环境科学学报,2014,33(9):1762-1769.
[50]杨冬艳,高晶霞,桑婷,等. 溶磷菌和解钾菌对拱棚连作辣椒生长及土壤养分含量的影响[J]. 北方园艺,2019(6):1-6.
[51]王岩,周鹏,白立伟,等. 生物炭和AM真菌配施对连作辣椒生长和土壤养分的影响[J]. 中国生态农业学报(中英文),2020,28(10):1600-1608.
[52]Lehmann J. A handful of carbon[J]. Nature,2007,447(7141):143-144.
[53]Singh Mavi M,Singh G,Singh B P,et al. Interactive effects of rice-residue biochar and N-fertilizer on soil functions and crop biomass in contrasting soils[J]. Journal of Soil Science and Plant Nutrition,2018,18(1):41-59.
[54]Meier S,Moore F,González M E,et al. Effects of three biochars on copper immobilization and soil microbial communities in a metal-contaminated soil using a metallophyte and two agricultural plants[J]. Environmental Geochemistry and Health,2021,43(4):1441-1456.
[55]Blanco-Canqui H. Biochar and soil physical properties[J]. Soil Science Society of America Journal,2017,81:687-711.
[56]Zhang X Y,Gao B,Creamer A E,et al. Adsorption of VOCs onto engineered carbon materials:a review[J]. Journal of Hazardous Materials,2017,338:102-123.
[57]Glaser B,Lehmann J,Zech W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal:a review[J]. Biology and Fertility of Soils,2002,35(4):219-230.
[58]Han G M,Chen Q Q,Zhang S X,et al. Biochar effects on bacterial community and metabolic pathways in continuously cotton-cropped soil[J]. Journal of Soil Science and Plant Nutrition,2019,19(2):249-261.
[59]Steiner C,Das K C,Garcia M,et al. Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralsol[J]. Pedobiologia,2008,51(5/6):359-366.
[60]Dai Z M,Zhang X J,Tang C,et al. Potential role of biochars in decreasing soil acidification—A critical review[J]. Science of the Total Environment,2017,581/582:601-611.
[61]Yuan J H,Xu R K,Zhang H. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technology,2011,102(3):3488-3497.
[62]Xu X Y,Zhao Y H,Sima J K,et al. Indispensable role of biochar-inherent mineral constituents in its environmental applications:a review[J]. Bioresource Technology,2017,241:887-899.
[63]Fox A,Gahan J,Ikoyi I,et al. Miscanthus biochar promotes growth of spring barley and shifts bacterial community structures including phosphorus and sulfur mobilizing bacteria[J]. Pedobiologia,2016,59(4):195-202.
[64]Cao X D,Harris W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation[J]. Bioresource Technology,2010,101(14):5222-5228.
[65]Ding Y,Liu Y G,Liu S B,et al. Biochar to improve soil fertility. A review[J]. Agronomy for Sustainable Development,2016,36(2):36.
[66]Zhao Y H,Zhang L,Chen Y F,et al. Atmospheric nitrogen deposition to China:a model analysis on nitrogen budget and critical load exceedance[J]. Atmospheric Environment,2017,153:32-40.
[67]张福建,陈昱,吴才君,等. 江西省设施辣椒连作障碍现状调查与分析[J]. 北方园艺,2018(17):75-81.
[68]Teutscherova N,Lojka B,Houka J,et al. Application of holm oak biochar alters dynamics of enzymatic and microbial activity in two contrasting Mediterranean soils[J]. European Journal of Soil Biology,2018,88:15-26.
[69]Shi R Y,Hong Z N,Li J Y,et al. Mechanisms for increasing the pH buffering capacity of an acidic ultisol by crop residue-derived biochars[J]. Journal of Agricultural and Food Chemistry,2017,65(37):8111-8119.
[70]李秋霞,陈效民,靳泽文,等. 生物质炭对旱地红壤理化性状和作物产量的持续效应[J]. 水土保持学报,2015,29(3):208-213,261.
[71]袁金华,徐仁扣,俄胜哲,等. 生物质炭中盐基离子存在形态及其与改良酸性土壤的关系[J]. 土壤,2019,51(1):75-82.
[72]赵牧秋,金凡莉,孙照炜,等. 制炭条件对生物炭碱性基团含量及酸性土壤改良效果的影响[J]. 水土保持学报,2014,28(4):299-303,309.
[73]杨彩迪,宗玉统,卢升高. 不同生物炭对酸性农田土壤性质和作物产量的动态影响[J]. 环境科学,2020,41(4):1914-1920.
[74]曾路生,高岩,李俊良,等. 寿光大棚菜地酸化与土壤养分变化关系研究[J]. 水土保持学报,2010,24(4):157-161.
[75]Oladele S O. Changes in physicochemical properties and quality index of an alfisol after three years of rice husk biochar amendment in rainfed rice-maize cropping sequence[J]. Geoderma,2019,353:359-371.
[76]Xiao X,Chen B L,Chen Z M,et al. Insight into multiple and multilevel structures of biochars and their potential environmental applications:a critical review[J]. Environmental Science & Technology,2018,52(9):5027-5047.
[77]Zhao L Y,Guan H L,Wang R,et al. Effects of tobacco stem-derived biochar on soil properties and bacterial community structure under continuous cropping of Bletilla striata[J]. Journal of Soil Science and Plant Nutrition,2021,21(2):1318-1328.
[78]Li S P,Li Z L,Feng X,et al. Effects of biochar additions on the soil chemical properties,bacterial community structure and rape growth in an acid purple soil[J]. Plant,Soil and Environment,2021,67(3):121-129.
[79]Khadem A,Raiesi F. Influence of biochar on potential enzyme activities in two calcareous soils of contrasting texture[J]. Geoderma,2017,308:149-158.
[80]Yao Z Y,Xing J J,Gu H P,et al. Development of microbial community structure in vegetable-growing soils from open-field to plastic-greenhouse cultivation based on the PLFA analysis[J]. Journal of Soils and Sediments,2016,16(8):2041-2049.
[81]Zhong W H,Bian B Y,Gao N,et al. Nitrogen fertilization induced changes in ammonia oxidation are attributable mostly to bacteria rather than archaea in greenhouse-based high N input vegetable soil[J]. Soil Biology and Biochemistry,2016,93:150-159.
[82]Zhao Y N,Mao X X,Zhang M S,et al. Response of soil microbial communities to continuously mono-cropped cucumber under greenhouse conditions in a calcareous soil of North China[J]. Journal of Soils and Sediments,2020,20(5):2446-2459.
[83]Kalam S,Basu A,Ahmad I,et al. Recent understanding of soil acidobacteria and their ecological significance:a critical review[J]. Frontiers in Microbiology,2020,11:580024.
[84]武春成,周国彦,曹霞,等. 连作土壤连续施入生物炭对黄瓜品质及根区微生态的影响[J]. 江苏农业科学,2022,50(9):143-147.
[85]Ameur D,Zehetner F,Johnen S,et al. Activated biochar alters activities of carbon and nitrogen acquiring soil enzymes[J]. Pedobiologia,2018,69:1-10.
[86]Wang Y F,Ma Z T,Wang X W,et al. Effects of biochar on the growth of apple seedlings,soil enzyme activities and fungal communities in replant disease soil[J]. Scientia Horticulturae,2019,256:108641.
[87]Wang W P,Wang Z H,Yang K,et al. Biochar application alleviated negative plant-soil feedback by modifying soil microbiome[J]. Frontiers in Microbiology,2020,11:799.
[88]Egamberdieva D,Hua M,Reckling M,et al. Potential effects of biochar-based microbial inoculants in agriculture[J]. Environmental Sustainability,2018,1(1):19-24.
[89]Gu Y A,Hou Y G,Huang D P,et al. Application of biochar reduces Ralstonia solanacearum infection via effects on pathogen chemotaxis,swarming motility,and root exudate adsorption[J]. Plant and Soil,2017,415(1):269-281.
[90]Tao S Y,Wu Z S,Wei M M,et al. Bacillus subtilis SL-13 biochar formulation promotes pepper plant growth and soil improvement[J]. Canadian Journal of Microbiology,2019,65(5):333-342.
[91]Gong H B,Tan Z X,Zhang L M,et al. Preparation of biochar with high absorbability and its nutrient adsorption-desorption behaviour[J]. Science of the Total Environment,2019,694:133728.
[92]王光飞,马艳,郭德杰,等. 秸秆生物炭对辣椒疫病的防控效果及机理研究[J]. 土壤,2015,47(6):1107-1114.
[93]王光飞,马艳,郭德杰,等. 生物质炭介导生防微生物抑制辣椒疫霉的作用[J]. 中国生态农业学报(中英文),2019,27(7):1015-1023.
[94]Zhang Z Z,Zhang Z D,Han X Y,et al. Specific response mechanism to autotoxicity in melon (Cucumis melo L.) root revealed by physiological analyses combined with transcriptome profiling[J]. Ecotoxicology and Environmental Safety,2020,200:110779.
[95]Kearns J P,Shimabuku K K,Mahoney R B,et al. Meeting multiple water quality objectives through treatment using locally generated char:improving organoleptic properties and removing synthetic organic contaminants and disinfection by-products[J]. Journal of Water,Sanitation and Hygiene for Development,2015,5(3):359-372.
[96]Elmer W H,Pignatello J J. Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of Asparagus in replant soils[J]. Plant Disease,2011,95(8):960-966.
[97]Wang Y F,Pan F B,Wang G S,et al. Effects of biochar on photosynthesis and antioxidative system of Malus hupehensis Rehd. seedlings under replant conditions[J]. Scientia Horticulturae,2014,175:9-15.
[98]Rogovska N,Laird D,Cruse R M,et al. Germination tests for assessing biochar quality[J]. Journal of Environmental Quality,2012,41(4):1014-1022.
[99]马艳,王光飞. 生物炭防控植物土传病害研究进展[J]. 中国土壤与肥料,2014(6):14-20.

相似文献/References:

[1]徐琪,段欣玲,刘颖,等.基施生物质炭对强筋春小麦植株营养及土壤养分供应的影响[J].江苏农业科学,2013,41(07):69.
 Xu Qi,et al.Effect of biochar used as base manure on plant nutrition status and soil nutrient provision of strong gluten spring wheat[J].Jiangsu Agricultural Sciences,2013,41(6):69.
[2]杨卓,陈婧,揣莹.芦苇生物质炭的制备、表征及吸附性能[J].江苏农业科学,2016,44(11):464.
 Yang Zhuo,et al.Preparation,characterization and adsorption performance of reed biochar[J].Jiangsu Agricultural Sciences,2016,44(6):464.
[3]冯丹,邢巧,葛成军,等.木薯渣基炭制备及对热带砖红壤的改良效果[J].江苏农业科学,2017,45(01):234.
 Feng Dan,et al.Preparation of cassava dreg carbon and its improvement effect on laterite[J].Jiangsu Agricultural Sciences,2017,45(6):234.
[4]岳林,邢巧,吴晓晨,等.甘蔗渣基生物质炭对溶液中Cd(Ⅱ)的吸附解吸作用[J].江苏农业科学,2017,45(03):216.
 Yue Lin,et al.Adsorption and desorption of Cd(Ⅱ) by biochars derived from bagasse[J].Jiangsu Agricultural Sciences,2017,45(6):216.
[5]赵伟,丁弈君,孙泰朋,等.生物质炭对汞污染土壤吸附钝化的影响[J].江苏农业科学,2017,45(11):192.
 Zhao Wei,et al.Effects of biomass carbon on adsorption and passivation of mercury contaminated soil[J].Jiangsu Agricultural Sciences,2017,45(6):192.
[6]王宏燕,许毛毛,孟雨田,等.玉米秸秆与秸秆生物炭对2种黑土有机碳含量及碳库指数的影响[J].江苏农业科学,2017,45(12):228.
 Wang Hongyan,et al.Influences of maize straw and straw biochar on organic carbon content and carbon pool management index of two kinds of black soils[J].Jiangsu Agricultural Sciences,2017,45(6):228.
[7]许泽宏,程晓丹,周明罗,等.生物质炭对荠菜生长过程中根区土壤特性和微生物特性的影响[J].江苏农业科学,2017,45(16):104.
 Xu Zehong,et al.Influences of biomass carbon on soil properties and microbial characteristics of root zone during growth of Capsella bursa-pastoris[J].Jiangsu Agricultural Sciences,2017,45(6):104.
[8]陆文龙,赵标.盆栽条件下秸秆不同处理方式对土壤氮形态分布的影响[J].江苏农业科学,2018,46(1):193.
 Lu Wenlong,et al.Effects of different treatments of straw on soil nitrogen distribution under potted conditions[J].Jiangsu Agricultural Sciences,2018,46(6):193.
[9]李传宝,孟雨田,李晓庆,等.生物质炭对玉米生长发育、产量及白浆土理化性状的影响[J].江苏农业科学,2018,46(08):56.
 Li Chuanbao,et al.Effects of biochar on growth and yield of maize and soil physical and chemical properties[J].Jiangsu Agricultural Sciences,2018,46(6):56.
[10]陈红卫,张重路,王一山,等.生物质炭对重金属污染土壤中汞的赋存形态及运移分配的影响[J].江苏农业科学,2018,46(08):312.
 Chen Hongwei,et al.Effects of biochar on speciation and distribution of mercury in soils contaminated by heavy metals[J].Jiangsu Agricultural Sciences,2018,46(6):312.

备注/Memo

备注/Memo:
收稿日期:2022-05-09
基金项目:国家重点研发计划(编号:2021YFD1901202);湖北省重点研发计划(编号:2021BCA156);武汉市科技计划(编号:2020020601012284)。
作者简介:徐晗(1998—),男,吉林松原人,硕士研究生,主要从事土壤生态研究。E-mail:1778967364@qq.com。
通信作者:林杉,博士,副教授,主要从事土壤改良与温室气体减排研究。E-mail:linshan@mail.hzau.edu.cn。
更新日期/Last Update: 2023-03-20