|本期目录/Table of Contents|

[1]刘巧玲,李王成,贾振江,等.干旱胁迫下植物根系适应性机制研究进展与热点分析[J].江苏农业科学,2023,51(9):34-40.
 Liu Qiaoling,et al.Research progress and hotspot analysis of plant root adaptation mechanisms under drought stress[J].Jiangsu Agricultural Sciences,2023,51(9):34-40.
点击复制

干旱胁迫下植物根系适应性机制研究进展与热点分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第9期
页码:
34-40
栏目:
专论与综述
出版日期:
2023-05-05

文章信息/Info

Title:
Research progress and hotspot analysis of plant root adaptation mechanisms under drought stress
作者:
刘巧玲1李王成123贾振江1安文举1赵广兴1宿起坤1李阳阳1
1.宁夏大学土木与水利工程学院,宁夏银川 750021; 2.旱区现代农业水资源高效利用教育部工程研究中心,宁夏银川 750021;3.省部共建西北土地退化与生态恢复国家重点实验室,宁夏银川 750021
Author(s):
Liu Qiaolinget al
关键词:
干旱胁迫根系形态结构生理特性分子机理适应性机制
Keywords:
-
分类号:
S314;S184
DOI:
-
文献标志码:
A
摘要:
随着极端天气和水资源短缺现象的加剧恶化,干旱已成为限制植物生长的最严重的非生物胁迫之一。根系作为植物吸水的关键器官,具有较强的可塑性,通过基因差异表达调控自身生长发育形成不同的根系构型和渗透物质等对干旱产生适应性。为了解干旱胁迫下植物根系的适应性机制,通过收集中国知网(CNKI)和Web Of Science(WOS)数据库中2001—2021年近20年已发表的核心期刊内容,采用VOSviewer软件对干旱胁迫下植物根系适应性机制的相关研究内容和热点趋势进行聚类分析,依照研究热点演进顺序综述了植物根系形态特征、生理特性和分子机理3个方面的适应机制,并建议开展植物根系适应性阈值确定以及联合微观和宏观系统明确植物抗旱机理的相关研究,以期为水资源的高效合理利用以及干旱地区的生态恢复提供帮助。
Abstract:
-

参考文献/References:

[1]Bhusal N,Lee M S,Lee H,et al. Evaluation of morphological,physiological,and biochemical traits for assessing drought resistance in eleven tree species[J]. Science of the Total Environment,2021,779:146466.
[2]贾振江,赵广兴,李王成,等. 宁夏中部干旱带砂土混合覆盖下土壤蒸发估算[J]. 水土保持学报,2022,36(2):219-227.
[3]苗青霞,方燕,陈应龙. 小麦根系特征对干旱胁迫的响应[J]. 植物学报,2019,54(5):652-661.
[4]刘巧玲,李王成,赵广兴,等. 覆砂和灌水量对退耕压砂地生态枣林土壤水热及枣果产量的影响[J]. 农业资源与环境学报,2022,39(5):940-947.
[5]赵国靖,徐伟洲,郭亚力,等. 达乌里胡枝子根系形态特征对土壤水分变化的响应[J]. 应用与环境生物学报,2014,20(3):484-490.
[6]郑淼,郭毅,王丽敏. 干旱胁迫对红宝石海棠根系形态及生理特性的影响[J]. 中国农业科技导报,2020,22(3):24-30.
[7]李文娆,张岁岐,丁圣彦,等. 干旱胁迫下紫花苜蓿根系形态变化及与水分利用的关系[J]. 生态学报,2010,30(19):5140-5150.
[8]李琬. 干旱对大豆根系生育的影响及灌溉缓解效应研究进展[J]. 草业学报,2019,28(4):192-202.
[9] Fitter A H. The topology and geometry of plant root systems:influence of watering rate on root system topology in Trifolium pratense[J]. Annals of Botany,1986,58(1):91-101.
[10] Bouma T J,Nielsen K L,van Hal J,et al. Root system topology and diameter distribution of species from habitats differing in inundation frequency[J]. Functional Ecology,2001,15(3):360-369.
[11]单立山,李毅,董秋莲,等. 红砂根系构型对干旱的生态适应[J]. 中国沙漠,2012,32(5):1283-1290.
[12]马雄忠,王新平. 阿拉善高原2种荒漠植物根系构型及生态适应性特征[J]. 生态学报,2020,40(17):6001-6008.
[13]Steudle E. Water uptake by roots:effects of water deficit[J]. Journal of Experimental Botany,2000,51(350):1531-1542.
[14]Lynch J P. Rightsizing root phenotypes for drought resistance[J]. Journal of Experimental Botany,2018,69(13):3279-3292.
[15]赵广兴,徐天渊,李王成,等. 白茎盐生草幼苗对干旱胁迫的响应研究[J]. 干旱区资源与环境,2021,35(4):195-202.
[16]张翠梅,师尚礼,刘珍,等. 干旱胁迫对不同抗旱性苜蓿品种根系形态及解剖结构的影响[J]. 草业学报,2019,28(5):79-89.
[17]王竞红,张秀梅,陈艾,等. 紫穗槐幼苗根系生理特性和解剖结构对PEG-6000模拟干旱的响应[J]. 生态学报,2018,38(2):511-517.
[18]甄博,郭相平,陆红飞. 旱涝交替胁迫对水稻分蘖期根解剖结构的影响[J]. 农业工程学报,2015,31(9):107-113.
[19]赵高卷,平盼,马焕成. 干热河谷木棉科三种植物根茎叶水分传输的解剖结构比较研究[J]. 干旱区资源与环境,2016,30(1):162-168.
[20]陈小红,徐扬,刘韩,等. 川西高原4种高山海棠的根茎解剖结构特征及其抗旱响应策略分析[J]. 西北植物学报,2017,37(7):1296-1302.
[21]Williams A,de Vries F T. Plant root exudation under drought:implications for ecosystem functioning[J]. The New Phytologist,2020,225(5):1899-1905.
[22]陆思羽,李悦,陶凌剑,等. 干旱胁迫下不同圆齿野鸦椿家系苗木生理生化指标的变化[J]. 南方农业学报,2020,51(6):1400-1408.
[23]张志良,瞿伟菁,李小方. 植物生理学实验指导[M]. 4版.北京:高等教育出版社,2009.
[24]李帅,赵国靖,徐伟洲,等. 白羊草根系形态特征对土壤水分阶段变化的响应[J]. 草业学报,2016,25(2):169-177.
[25]丁红,张智猛,戴良香,等. 干旱胁迫对花生根系生长发育和生理特性的影响[J]. 应用生态学报,2013,24(6):1586-1592.
[26]Chai Q,Gan Y T,Zhao C,et al. Regulated deficit irrigation for crop production under drought stress[J]. Agronomy for Sustainable Development,2016,36(1):3.
[27]刘芬,屈成,王悦,等. 抽穗期干旱复水对机插水稻抗氧化酶活性及根系活力的影响[J]. 南方农业学报,2020,51(1):65-71.
[28]董馥慧,裴红宾,张永清,等. 不同生育时期干旱胁迫对‘迪庆苦荞’和‘黑丰一号’苦荞生长及生理特性的影响[J]. 广西植物,2021,41(6):970-978.
[29]肖凡,蒋景龙,段敏.干旱和复水条件下黄瓜幼苗生长和生理生化的响应[J]. 南方农业学报,2019,50(10):2241-2248.
[30]陈丽,焦健,朱绍丹,等. 油橄榄对牧草间作与干旱胁迫交互作用的根系生理响应[J]. 江苏农业学报,2019,35(6):1434-1440.
[31]张希吏,王萍,石磊,等. 干旱胁迫对沙芥幼苗根系形态及抗氧化酶活性的影响[J]. 干旱地区农业研究,2016,34(3):160-164.
[32]Hill D,Nelson D,Hammond J,et al. Morphophysiology of potato (Solanum tuberosum) in response to drought stress:paving the way forward[J]. Frontiers in Plant Science,2021,11:597554.
[33]王凯,郭晶晶,王冬琦,等. 樟子松和油松根叶对春季干旱胁迫的响应[J]. 生态学杂志,2015,34(11):3132-3138.
[34]Shemi R,Wang R,Gheith E S M S,et al. Effects of salicylic acid,zinc and glycine betaine on morpho-physiological growth and yield of maize under drought stress[J]. Scientific Reports,2021,11(1):3195.
[35]张翠梅,师尚礼,吴芳.干旱胁迫对不同抗旱性苜蓿品种根系生长及生理特性影响[J]. 中国农业科学,2018,51(5):868-882.
[36]Takahashi F,Kuromori T,Urano K,et al. Drought stress responses and resistance in plants:from cellular responses to long-distance intercellular communication[J]. Frontiers in Plant Science,2020,11:556972.
[37]Imadi S R,Kazi A G,Ahanger M A,et al. Plant transcriptomics and responses to environmental stress:an overview[J]. Journal of Genetics,2015,94(3):525-537.
[38]Stark R,Grzelak M,Hadfield J. RNA sequencing:the teenage years[J]. Nature Reviews Genetics,2019,20(11):631-656.
[39]Golldack D,Li C,Mohan H,et al. Tolerance to drought and salt stress in plants:unraveling the signaling networks[J]. Frontiers in Plant Science,2014,5:151.
[40]Xie Z L,Nolan T,Jiang H,et al. The AP2/ERF transcription factor TINY modulates brassinosteroid-regulated plant growth and drought responses in Arabidopsis[J]. The Plant Cell,2019,31(8):1788-1806.
[41]Wu J D,Jiang Y L,Liang Y N,et al. Expression of the maize MYB transcription factor ZmMYB3R enhances drought and salt stress tolerance in transgenic plants[J]. Plant Physiology and Biochemistry,2019,137:179-188.
[42]Erpen L,Devi H S,Grosser J W,et al. Potential use of the DREB/ERF,MYB,NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants[J]. Plant Cell,Tissue and Organ Culture,2018,132(1):1-25.
[43]Yang Y,Wei W L,Zhou Y B,et al. The soybean bZIP transcription factor gene GmbZIP2 confers drought and salt resistances in transgenic plants[J]. International Journal of Molecular Sciences,2020,21(2):670.
[44]刘潮,韩利红,宋培兵,等. 桑树WRKY转录因子的全基因组鉴定及生物信息学分析[J]. 南方农业学报,2017,48(9):1691-1699.
[45]Wasinger V C,Cordwell S J,Cerpa-Poljak A,et al. Progress with gene-product mapping of the Mollicutes:Mycoplasma genitalium[J]. Electrophoresis,1995,16(7):1090-1094.
[46]Tan B C,Lim Y S,Lau S E. Proteomics in commercial crops:an overview[J]. Journal of Proteomics,2017,169:176-188.
[47]常丽丽,彭存智,王丹,等. 盐芥叶片应答盐胁迫的蛋白质组学分析[J]. 江苏农业学报,2022,38(1):49-64.
[48]Liu Y H,Lu S,Liu K F,et al. Proteomics:a powerful tool to study plant responses to biotic stress[J]. Plant Methods,2019,15(1):135.
[49]Aslam B,Basit M,Nisar M A,et al. Proteomics:technologies and their applications[J]. Journal of Chromatographic Science,2017,55(2):182-196.
[50]王月英,黄广学,孟利前,等. 干旱胁迫下蒙古冰草的蛋白质组学分析[J]. 沈阳农业大学学报,2020,51(1):105-110.
[51]邹成林,谭华,郑德波,等. 玉米灌浆期籽粒应答干旱胁迫的差异蛋白质组分析[J]. 分子植物育种,2020,18(13):4153-4163.
[52]Shanker A K,Maheswari M,Yadav S K,et al. Drought stress responses in crops[J]. Functional & Integrative Genomics,2014,14(1):11-22.
[53]Maroli A S,Gaines T A,Foley M E,et al. Omics in weed science:a perspective from genomics,transcriptomics,and metabolomics approaches[J]. Weed Science,2018,66(6):681-695.
[54]Aliferis K A,Bernard-Perron D. Cannabinomics:application of metabolomics in cannabis (Cannabis sativa L.) research and development[J]. Frontiers in Plant Science,2020,11:554.
[55]Michaletti A,Naghavi M R,Toorchi M,et al. Metabolomics and proteomics reveal drought-stress responses of leaf tissues from spring-wheat[J]. Scientific Reports,2018,8(1):5710.
[56]李小冬,王小利,王茜,等. 干旱胁迫下高羊茅叶片的代谢组学分析[J]. 中国草地学报,2016,38(5):59-65.

相似文献/References:

[1]张金然,缑艳霞,孙丽鹏.固氮螺菌157对玉米、向日葵的促生长作用[J].江苏农业科学,2014,42(12):116.
 Zhang Jinran,et al.Effects of Azospirillum 157 on growth of maize and sunflower[J].Jiangsu Agricultural Sciences,2014,42(9):116.
[2]李光,龚宁.干旱胁迫对金线兰POD活性及同工酶酶谱的影响[J].江苏农业科学,2014,42(11):208.
 Li Guang,et al(08).Effects of drought stress on activity and isoenzyme zymogram of POD in Anoectochilus roxburghii[J].Jiangsu Agricultural Sciences,2014,42(9):208.
[3]陈莹,钟理,赵丽丽,等.截叶铁扫帚种子萌发期对岩溶生境高钙干旱的生理生化反应[J].江苏农业科学,2014,42(09):335.
 Chen Ying,et al.Physiological and biochemical responses of Lespedeza cuneata seedlings to different calcium and drought stresses in karst habitats[J].Jiangsu Agricultural Sciences,2014,42(9):335.
[4]余莉琳,裴宗平,常晓华,等.干旱胁迫及复水对4种矿区生态修复草本植物生理特性的影响[J].江苏农业科学,2013,41(07):362.
 Yu Lilin,et al.Effects of drought stress and rewatering on physiological characteristics of several herbaceous plants with ecological restoration function[J].Jiangsu Agricultural Sciences,2013,41(9):362.
[5]岳莉然,孙妙婷.紫叶酢浆草光合特性及耐旱性研究[J].江苏农业科学,2013,41(08):169.
 Yue Liran,et al.Study on photosynthetic characteristics and drought tolerance of Oxalis triangularis cv. purpurea[J].Jiangsu Agricultural Sciences,2013,41(9):169.
[6]李鹏,刘济明,颜强,等.干旱胁迫对小蓬竹繁殖和某些生理特性的影响[J].江苏农业科学,2014,42(08):181.
 Li Peng,et al.Effects of drought stress on reproduction and some physiological characteristics of Drepanostachyum luodianense[J].Jiangsu Agricultural Sciences,2014,42(9):181.
[7]程小毛,罗翠芹.不同土壤水分处理对香樟幼苗生理特性的影响[J].江苏农业科学,2013,41(09):171.
 Cheng Xiaomao,et al.Effects of different soil water treatments on physiological characteristics of Cinnamomum camphora seedlings[J].Jiangsu Agricultural Sciences,2013,41(9):171.
[8]杨阳,刘秉儒,贾倩民,等.赤霉素对干旱胁迫下沙冬青种子萌发的影响[J].江苏农业科学,2014,42(05):271.
 Yang Yang,et al.Effect of gibberellin on seed germination of Ammopiptanthus mongolicus under drought stress[J].Jiangsu Agricultural Sciences,2014,42(9):271.
[9]于惠琳,史振声,丛玲,等.干旱胁迫下甜高粱和粒用高粱光合及生理响应比较[J].江苏农业科学,2014,42(02):72.
 Yu Huilin,et al.Comparative photosynthetic and physiological response of sweet sorghum and grain sorghum under drought stress[J].Jiangsu Agricultural Sciences,2014,42(9):72.
[10]吴庆贵,杨敬天,邹利娟,等.珙桐幼苗生理生态特性对土壤干旱胁迫的响应[J].江苏农业科学,2014,42(02):119.
 Wu Qinggui,et al.Effects of drought stress on physiological and biochemical parameters of Davidia involucrata[J].Jiangsu Agricultural Sciences,2014,42(9):119.

备注/Memo

备注/Memo:
收稿日期:2022-07-30
基金项目:国家自然科学基金(编号:52169010、51869023);宁夏自然科学基金重点项目(编号:2021AAC02008);国家重点研发计划(编号:2021YFD1900600);宁夏回族自治区重点研发计划(引才专项)(编号:2019BEB04029);宁夏回族自治区重点研发计划(编号:2019BEH03010);宁夏高等学校一流学科建设资助项目(编号:NXYLXK2021A03);宁夏大学研究生创新项目(编号:CXXM202240)。
作者简介:刘巧玲(1998—),河南新乡人,硕士研究生,主要从事农业水资源高效利用研究。E-mail:lqldyx820@163.com。
通信作者:李王成,博士,教授,主要从事水土资源退化与修复研究。E-mail:liwangcheng@126.com。
更新日期/Last Update: 2023-05-05