|本期目录/Table of Contents|

[1]纪艺红,李越,白雪,等.马铃薯DHN家族基因鉴定及干旱胁迫诱导表达分析[J].江苏农业科学,2023,51(14):58-64.
 Ji Yihong,et al.Genome-wide identification and drought stress-induced expression analysis of the DHN gene family in potatoes[J].Jiangsu Agricultural Sciences,2023,51(14):58-64.
点击复制

马铃薯DHN家族基因鉴定及干旱胁迫诱导表达分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第14期
页码:
58-64
栏目:
生物技术
出版日期:
2023-07-20

文章信息/Info

Title:
Genome-wide identification and drought stress-induced expression analysis of the DHN gene family in potatoes
作者:
纪艺红李越白雪温美沙刘畅许春江李雅飞王磊
河北北方学院,河北张家口 075000
Author(s):
Ji Yihonget al
关键词:
全基因组马铃薯干旱胁迫组织特异性表达分析
Keywords:
-
分类号:
S532.03
DOI:
-
文献标志码:
A
摘要:
马铃薯遭遇干旱胁迫时,会导致产量下降、品质降低。用生物信息学的方法,对马铃薯DHN(StDHN)基因家族进行全基因组鉴定,对其理化性质、染色体分布等进行分析,利用荧光定量的方法,对其在干旱胁迫下和不同组织中的表达模式进行分析。结果表明,StDHN基因家族共鉴定出5个家族成员,分布于1号、2号和4号染色体上,理化性质分析表明氨基酸长度为80~243个,分子量为8 544.27~25 121.94 ku,等电点(pI)的范围为5.24~7.38。StDHN蛋白的二级结构基本以无规卷曲为主,延伸链与β-转角的比例相当,仅有PG0009968以α-螺旋为主。对马铃薯DHN基因上游1 500 bp启动子区域顺式作用元件分析发现,DHN基因受到光的调控,平均每个基因中有10.4个光响应元件;还受到脱落酸(PG0015495、PG0003531、PG0009968)、赤霉素(PG0003531)等激素的调控;与逆境胁迫相关的包括低温响应元件(PG0030949、PG0003531、PG0009968)、干旱响应元件(PG0030949)等;生长发育调控元件包括胚乳表达(PG0015495)、种子特异性调控(PG0003531)、分生组织表达(PG0003531、PG0009968)。荧光定量结果发现,DHN基因参与干旱应答响应,也有可能参与马铃薯的生长调控。本研究为马铃薯中的耐旱候选基因研究提供参考。
Abstract:
-

参考文献/References:

[1]Alsheikh M K,Heyen B J,Randall S K.Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation[J]. Journal of Biological Chemistry,2003,278(42):40882-40889.
[2]Zhu J K.Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology,2002,53:247-273.
[3]Bartels D,Sunkar R.Drought and salt tolerance in plants[J]. Critical Reviews in Plant Sciences,2005,24(1):23-58.
[4]Szabala B M,Fudali S,Rorat T.Accumulation of acidic SK3 dehydrins in phloem cells of cold-and drought-stressed plants of the Solanaceae[J]. Planta,2014,239(4):847-863.
[5]Godoy J A,Lunar R,Torres-Schumann S,et al. Expression,tissue distribution and subcellular localization of dehydrin TAS14 in salt-stressed tomato plants[J]. Plant Molecular Biology,1994,26(6):1921-1934.
[6]Graether S P,Boddington K F.Disorder and function:a review of the dehydrin protein family[J]. Frontiers in Plant Science,2014,5:576.
[7]Bray E A.Molecular responses to water deficit[J]. Plant Physiology,1993,103(4):1035-1040.
[8]夏惠,林玲,高帆,等. 植物脱水素对多种逆境的响应[J]. 干旱地区农业研究,2014,32(4):47-52.
[9]Kosová K,Vítámvás P,Práil I T.The role of dehydrins in plant response to cold[J]. Biologia Plantarum,2007,51(4):601-617.
[10]Cao Y X,Xiang X,Geng M T,et al. Effect of HbDHN1 and HbDHN2 genes on abiotic stress responses in Arabidopsis[J]. Frontiers in Plant Science,2017,8:470.
[11]Chen Y K,Li C H,Zhang B,et al. The role of the late embryogenesis-abundant (LEA) protein family in development and the abiotic stress response:a comprehensive expression analysis of potato (Solanum tuberosum)[J]. Genes,2019,10(2):148.
[12]Peng Y H,Reyes J L,Wei H,et al. RcDhn5,a cold acclimation-responsive dehydrin from Rhododendron catawbiense rescues enzyme activity from dehydration effects in vitro and enhances freezing tolerance in RcDhn5-overexpressing Arabidopsis plants[J]. Physiologia Plantarum,2008,134(4):583-597.
[13]Singh Shekhawat U K,Srinivas L,Ganapathi T R.MusaDHN-1,a novel multiple stress-inducible SK3-type dehydrin gene,contributes affirmatively to drought-and salt-stress tolerance in banana[J]. Planta,2011,234(5):915-932.
[14]Rorat T. Plant dehydrins—Tissue location,structure and function[J]. Cellular & Molecular Biology Letters,2006,11(4):536-556.
[15]Puhakainen T,Hess M W,Mkel P,et al. Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis[J]. Plant Molecular Biology,2004,54(5):743-753.
[16]Houde M,Dallaire S,NDong D,et al. Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves[J]. Plant Biotechnology Journal,2004,2(5):381-387.
[17]Kaye C,Neven L,Hofig A,et al. Characterization of a gene for spinach CAP160 and expression of two spinach cold-acclimation proteins in tobacco[J]. Plant Physiology,1998,116(4):1367-1377.
[18]Park S Y,Noh K J,Yoo J H,et al. Rapid upregulation of Dehyrin3 and Dehydrin4 in response to dehydration is a characteristic of drought-tolerant genotypes in barley[J]. Journal of Plant Biology,2006,49(6):455-462.
[19]Kumar M,Lee S C,Kim J Y,et al. Over-expression of dehydrin gene,OsDhn1,improves drought and salt stress tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.)[J]. Journal of Plant Biology,2014,57(6):383-393.
[20]Guo X Y,Zhang L,Wang X Z,et al. Overexpression of Saussurea involucrata dehydrin gene SiDHN promotes cold and drought tolerance in transgenic tomato plants[J]. PLoS One,2019,14(11):e0225090.
[21]Ruibal C,Salamó I P,Carballo V,et al. Differential contribution of individual dehydrin genes from Physcomitrella patens to salt and osmotic stress tolerance[J]. Plant Science,2012,190:89-102.
[22]Xu H X,Li X Y,Xu C J,et al. Overexpression of loquat dehydrin gene EjDHN1 promotes cold tolerance in transgenic tobacco[J]. Russian Journal of Plant Physiology,2018,65(1):69-77.
[23]Luo D,Hou X M,Zhang Y M,et al. CaDHN5,a dehydrin gene from pepper,plays an important role in salt and osmotic stress responses[J]. International Journal of Molecular Sciences,2019,20(8):1989.
[24]Qiu H L,Zhang L H,Liu C,et al. Cloning and characterization of a novel dehydrin gene,SiDhn2,from Saussurea involucrata Kar.et Kir[J]. Plant Molecular Biology,2014,84(6):707-718.
[25]Xu J,Zhang Y X,Wei W,et al. BjDHNs confer heavy-metal tolerance in plants[J]. Molecular Biotechnology,2008,38(2):91-98.
[26]Liu Y,Li D X,Song Q P,et al. The maize late embryogenesis abundant protein ZmDHN13 positively regulates copper tolerance in transgenic yeast and tobacco[J]. The Crop Journal,2019,7(3):403-410.
[27]Choi D W,Close T J.A newly identified barley gene,Dhn12,encoding a YSK2 DHN,is located on chromosome 6H and has embryo-specific expression[J]. Theoretical and Applied Genetics,2000,100(8):1274-1278.
[28]Liang D,Xia H,Wu S,et al. Genome-wide identification and expression profiling of dehydrin gene family in Malus domestica[J]. Molecular Biology Reports,2012,39(12):10759-10768.
[29]Yang Y Z,He M Y,Zhu Z G,et al. Identification of the dehydrin gene family from grapevine species and analysis of their responsiveness to various forms of abiotic and biotic stress[J]. BMC Plant Biology,2012,12:140.
[30]Zhou Y,Hu L F,Xu S Y,et al. Identification and transcriptional analysis of dehydrin gene family in cucumber (Cucumis sativus)[J]. Acta Physiologiae Plantarum,2018,40(8):144.
[31]Hussain S,Niu Q F,Qian M J,et al. Genome-wide identification,characterization,and expression analysis of the dehydrin gene family in Asian pear (Pyrus pyrifolia)[J]. Tree Genetics & Genomes,2015,11(5):1-11.
[32]Zhang J,Xia H,Liang D,et al. Genome-wide identification and expression profiling of the dehydrin gene family in Actinidia chinensis[J]. Scientia Horticulturae,2021,280:109930.
[33]孙小川,段伟科,黄志楠,等. 萝卜DHN基因家族的鉴定及表达模式分析[J/OL]. 分子植物育种,2021:1-8.[2022-01-10]. https://kns.cnki.net/kcms/detail/46.1068.S.20210922.1446.005.html.

相似文献/References:

[1]王朝海,陈春艳,顾尚敬,等.不同覆土高度对马铃薯产量及其构成的影响[J].江苏农业科学,2013,41(04):101.
[2]石虎,杨永智,周云,等.马铃薯新品种青薯9号高效再生体系的建立[J].江苏农业科学,2013,41(05):14.
 Shi Hu,et al.Establishment of efficient regeneration system of new potato cultivar “Qingshu No.9”[J].Jiangsu Agricultural Sciences,2013,41(14):14.
[3]李珺,马力通.马铃薯淀粉体表达载体的构建及其转基因植物的培养[J].江苏农业科学,2013,41(08):22.
 Li Jun,et al.Construction of potato amyloplast expression vector and breeding of its genetically modified plants[J].Jiangsu Agricultural Sciences,2013,41(14):22.
[4]陈春艳,王朝海,白永生,等.不同稀释倍数代森锰锌防治马铃薯晚疫病的药效试验[J].江苏农业科学,2013,41(05):106.
 Chen Chunyan,et al.Control effect of different dilution multiple of mancozeb on potato late blight[J].Jiangsu Agricultural Sciences,2013,41(14):106.
[5]李葵花,高玉亮,吴京姬.转P5CS基因马铃薯“东农303”耐盐、抗旱性研究[J].江苏农业科学,2014,42(11):131.
 Li Kuihua,et al().Study on salt resistance and drought resistance of P5CS transgenic potato cultivar “Dongnong 303”[J].Jiangsu Agricultural Sciences,2014,42(14):131.
[6]李成松,冯玉磊,坎杂,等.单行悬挂式马铃薯施肥种植机的研制[J].江苏农业科学,2013,41(06):369.
 Li Chengsong,et al.Development of potato fertilizing and planting machine of single-line and suspension type[J].Jiangsu Agricultural Sciences,2013,41(14):369.
[7]袁晓航,高剑峰,岳远瑞,等.绵羊基因组DNA甲基化与传染性胸膜肺炎的关联性分析[J].江苏农业科学,2013,41(10):24.
 Yuan Xiaohang,et al.Correlation analysis of sheep genomic DNA methylation and contagious pleuropneumonia[J].Jiangsu Agricultural Sciences,2013,41(14):24.
[8]陈建保,段伟伟.马铃薯加工专用薯脱毒种薯的生产现状及改进措施——以乌兰察布地区夏波蒂原种(G2)生产为例[J].江苏农业科学,2015,43(12):117.
 Chen Jianbao,et al.Production status investigation and improvement measures of virus-free seeds of processing potatoes—Taking production of Shepody (G2) as an example in Wulanchabu area[J].Jiangsu Agricultural Sciences,2015,43(14):117.
[9]郭成瑾,张丽荣,沈瑞清.土壤消毒对马铃薯连作田土壤微生物数量的影响[J].江苏农业科学,2014,42(10):367.
 Guo Chengjin,et al.Effects of soil sterilization on soil microbial quantity in potato continuous cropping land[J].Jiangsu Agricultural Sciences,2014,42(14):367.
[10]张海颖,郭凤柳,许华民,等.河北省张北地区马铃薯疮痂病的病菌鉴定[J].江苏农业科学,2014,42(10):131.
 Zhang Haiying,et al.Identification of potato scab pathogen in Zhangbei,Hebei Province[J].Jiangsu Agricultural Sciences,2014,42(14):131.

备注/Memo

备注/Memo:
收稿日期:2022-10-12
基金项目:国家现代农业产业技术体系建设专项(编号:CARS-09-P05);河北省张家口市基础研究和人才培养计划项目(编号:2221015A);河北省教育厅自然科学类青年项目(编号:QN2021011);河北省马铃薯产业协同创新中心项目(编号:[2016]5号)。
作者简介:纪艺红(1990—),女,河北张家口人,硕士,助理研究员,研究方向为分子抗逆育种。E-mail:281030822@qq.com。
通信作者:王磊,博士,讲师,研究方向为马铃薯种质资源创新。E-mail:wanglei@hebeinu.edu.cn。
更新日期/Last Update: 2023-07-20