|本期目录/Table of Contents|

[1]周广飞,高夕全.玉米禾谷镰孢菌穗腐病抗性基因组选择研究[J].江苏农业科学,2023,51(14):65-70.
 Zhou Guangfei,et al.Genomic selection for resistance to maize gibberella ear rot[J].Jiangsu Agricultural Sciences,2023,51(14):65-70.
点击复制

玉米禾谷镰孢菌穗腐病抗性基因组选择研究(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第14期
页码:
65-70
栏目:
生物技术
出版日期:
2023-07-20

文章信息/Info

Title:
Genomic selection for resistance to maize gibberella ear rot
作者:
周广飞12高夕全2
1.江苏沿江地区农业科学研究所,江苏南通 226012; 2.南京农业大学作物遗传与种质创新国家重点实验室,江苏南京 210095
Author(s):
Zhou Guangfeiet al
关键词:
玉米禾谷镰孢菌穗腐病基因组选择预测准确性遗传改良
Keywords:
-
分类号:
S435.131.4+9
DOI:
-
文献标志码:
A
摘要:
禾谷镰孢菌穗腐病是玉米种植区普遍发生的重要病害之一,探究基因组选择在禾谷镰孢菌穗腐病抗性遗传改良中的应用潜力,有助于选育抗病品种。以玉米自交系DH4866和T877组配的重组自交系群体,对玉米禾谷镰孢菌穗腐病抗性进行基因组选择研究,分析数据模型、群体大小、标记密度、显著位点和遗传效应对预测准确性的影响。结果表明,在5种数据模型中,gBLUP模型对玉米禾谷镰孢菌穗腐病抗性具有较高的预测能力。预测准确性随着训练群体样本大小的增加而提高,当训练群体占群体总数80%时,预测准确性达到最高。当标记数量达到500时,即可获得相对较高的预测准确性。相对于随机效应模型,将显著位点作为固定效应没有显著提高预测准确性。相对于仅考虑加性效应,当在模型中考虑加加上位性效应时,预测准确性并没有得到显著提高。研究结果可为玉米禾谷镰孢菌穗腐病抗性的遗传改良提供理论参考。
Abstract:
-

参考文献/References:

[1]Gaikpa D S,Miedaner T. Genomics-assisted breeding for ear rot resistances and reduced mycotoxin contamination in maize:methods,advances and prospects[J]. Theoretical and Applied Genetics,2019,132(10):2721-2739.
[2]段灿星,王晓鸣,宋凤景,等. 玉米抗穗腐病研究进展[J]. 中国农业科学,2015,48(11):2152-2164.
[3]Zhou M,Yang L J,Shao M H,et al. Effects of zearalenone exposure on the TGF-β1/Smad3 signaling pathway and the expression of proliferation or apoptosis related genes of post-weaning gilts[J]. Toxins,2018,10(2):49.
[4]Pinton P,Oswald I P. Effect of deoxynivalenol and other type B trichothecenes on the intestine:a review[J]. Toxins,2014,6(5):1615-1643.
[5]Talas F,Mcdonald B A. Significant variation in sensitivity to a DMI fungicide in field populations of Fusarium graminearum[J]. Plant Pathology,2015,64(3):664-670.
[6]Munkvold G P. Cultural and genetic approaches to managing mycotoxins in maize[J]. Annual Review of Phytopathology,2003,41(1):99-116.
[7]Meuwissen T H E,Hayes B J,Goddard M E. Prediction of total genetic value using genome-wide dense marker maps[J]. Genetics,2001,157(4):1819-1829.
[8]Bernardo R,Yu J M. Prospects for genomewide selection for quantitative traits in maize[J]. Crop Science,2007,47(3):1082-1090.
[9]Voss-Fels K P,Cooper M,Hayes B J. Accelerating crop genetic gains with genomic selection[J]. Theoretical and Applied Genetics,2019,132(3):669-686.
[10]Han S,Miedaner T,Utz H F,et al. Genomic prediction and GWAS of Gibberella ear rot resistance traits in dent and flint lines of a public maize breeding program[J]. Euphytica,2018,214(1):6.
[11]Galiano-Carneiro A L,Kessel B,Presterl T,et al. Multi-parent QTL mapping reveals stable QTL conferring resistance to Gibberella ear rot in maize[J]. Euphytica,2020,217(1):1-13.
[12]Gaikpa D S,Kessel B,Presterl T,et al. Exploiting genetic diversity in two European maize landraces for improving Gibberella ear rot resistance using genomic tools[J]. Theoretical and Applied Genetics,2021,134(3):793-805.
[13]Li P C,Zhang Y Y,Yin S Y,et al. QTL-by-environment interaction in the response of maize root and shoot traits to different water regimes[J]. Frontiers in Plant Science,2018,9:229.
[14]Zhou G F,Hao D R,Xue L,et al. Genome-wide association study of kernel moisture content at harvest stage in maize[J]. Breeding Science,2018,68(5):622-628.
[15]Zhou G F,Li S F,Ma L,et al. Mapping and validation of a stable quantitative trait locus conferring maize resistance to Gibberella ear rot[J]. Plant Disease,2021,105(7):1984-1991.
[16]Reid L M,Mather D E,Bolton A T,et al. Evidence for a gene for silk resistance to Fusarium graminearum Schw. ear rot of maize[J]. Journal of Heredity,1994,85(2):118-121.
[17]Endelman J B. Ridge regression and other kernels for genomic selection with R package rrBLUP[J]. The Plant Genome,2011,4(3):250-255.
[18]Lipka A E,Tian F,Wang Q S,et al. GAPIT:genome association and prediction integrated tool[J]. Bioinformatics,2012,28(18):2397-2399.
[19]Pérez P,de los Campos G. Genome-wide regression and prediction with the BGLR statistical package[J]. Genetics,2014,198(2):483-495.
[20]Crossa J,Pérez P,Hickey J,et al. Genomic prediction in CIMMYT maize and wheat breeding programs[J]. Heredity,2014,112(1):48-60.
[21]Wang X,Xu Y,Hu Z L,et al. Genomic selection methods for crop improvement:current status and prospects[J]. The Crop Journal,2018,6(4):330-340.
[22]Heslot N,Yang H P,Sorrells M E,et al. Genomic selection in plant breeding:a comparison of models[J]. Crop Science,2012,52(1):146-160.
[23]Guo Z F,Zou C,Liu X G,et al. Complex genetic system involved in Fusarium ear rot resistance in maize as revealed by GWAS,bulked sample analysis,and genomic prediction[J]. Plant Disease,2020,104(6):1725-1735.
[24]Cao S L,Loladze A,Yuan Y B,et al. Genome-wide analysis of tar spot complex resistance in maize using genotyping-by-sequencing SNPs and whole-genome prediction[J]. The Plant Genome,2017,10(2):plantgenome2016.10.0099.
[25]Liu X G,Wang H W,Wang H,et al. Factors affecting genomic selection revealed by empirical evidence in maize[J]. The Crop Journal,2018,6(4):341-352.
[26]Lorenzana R E,Bernardo R. Accuracy of genotypic value predictions for marker-based selection in biparental plant populations[J]. Theoretical and Applied Genetics,2009,120(1):151-161.
[27]Moore J K,Manmathan H K,Anderson V A,et al. Improving genomic prediction for pre-harvest sprouting tolerance in wheat by weighting large-effect quantitative trait loci[J]. Crop Science,2017,57(3):1315-1324.
[28]Spindel J E,Begum H,Akdemir D,et al. Genome-wide prediction models that incorporate de novo GWAS are a powerful new tool for tropical rice improvement[J]. Heredity,2016,116(4):395-408.

相似文献/References:

[1]孙建伟.水涝胁迫对玉米细胞保护酶同工酶的影响[J].江苏农业科学,2013,41(04):85.
[2]刘荣,张卫建,齐华,等.密植型玉米“中单909”高产群体结构特征[J].江苏农业科学,2013,41(05):56.
 Liu Rong,et al.Study on high yield population structure of close planting maize cultivar “Zhongdan 909”[J].Jiangsu Agricultural Sciences,2013,41(14):56.
[3]沈浜凯,肖龙云,冯乃杰,等.黄腐酸和AM真菌对玉米幼苗抗旱性的影响[J].江苏农业科学,2013,41(05):64.
 Shen Bangkai,et al.Effects of fulvic acid and AM fungi on drought resistance of maize seedlings[J].Jiangsu Agricultural Sciences,2013,41(14):64.
[4]张金然,缑艳霞,孙丽鹏.固氮螺菌157对玉米、向日葵的促生长作用[J].江苏农业科学,2014,42(12):116.
 Zhang Jinran,et al.Effects of Azospirillum 157 on growth of maize and sunflower[J].Jiangsu Agricultural Sciences,2014,42(14):116.
[5]白小军,吴燕,牛艳,等.玉米中乙草胺和莠去津残留量GC-MS/MS分析法的建立[J].江苏农业科学,2014,42(11):334.
 Bai Xiaojun,et al().Establishment of GC-MS/MS analysis method of acetochlor and atrazine residues in maize[J].Jiangsu Agricultural Sciences,2014,42(14):334.
[6]邹晓威,王娜,刘芬,等.玉米抗病相关基因在玉米与玉米丝黑穗病菌、玉米黑粉病菌互作过程中的表达差异分析[J].江苏农业科学,2014,42(11):150.
 Zou Xiaowei,et al(0).Different expression of resistance-related genes between Sporisorium reilianum and Ustilago maydis interact with corn[J].Jiangsu Agricultural Sciences,2014,42(14):150.
[7]杨洪兴,陈静,陈艳萍.江苏省玉米机械化生产的发展及育种对策思考[J].江苏农业科学,2014,42(11):116.
 Yang Hongxing,et al().Development and breeding strategy of mechanized production of maize in Jiangsu Province[J].Jiangsu Agricultural Sciences,2014,42(14):116.
[8]张丽妍,霍剑锋,孟繁盛,等.不同肥料、施肥水平及施用方法对玉米产量、性状及效益的影响[J].江苏农业科学,2014,42(11):119.
 Zhang Liyan,et al (9).Effects of different fertilizers,fertilizer levels and fertilizing methods on yield,characters and benefit of maize[J].Jiangsu Agricultural Sciences,2014,42(14):119.
[9]王雷,崔震海,张立军.玉米C4型PEPC全长基因的克隆与表达载体构建[J].江苏农业科学,2014,42(11):26.
 Wang Lei,et al().Cloning and expression vector construction of full-length C4 type PEPC gene in maize[J].Jiangsu Agricultural Sciences,2014,42(14):26.
[10]雷恩,赵光明,刘艳红.不同稀释浓度松土保水剂对玉米营养生长的影响[J].江苏农业科学,2013,41(06):77.
 Lei En,et al.Effect of different dilutions of super absorbent polymer on vegetative growth of maize[J].Jiangsu Agricultural Sciences,2013,41(14):77.

备注/Memo

备注/Memo:
收稿日期:2022-10-12
基金项目:江苏省种业振兴揭榜挂帅项目(编号:JBGS[2021]054、JBGS[2021]009);江苏省南通市科技项目(编号:JC2021153、MS22021039);江苏沿江地区农业科学研究所学科建设专项基金(编号:YJXK[2021]201)。
作者简介:周广飞(1988—),男,山东济宁人,博士,助理研究员,从事玉米遗传育种研究。E-mail:gfzhou88@jaas.ac.cn。
更新日期/Last Update: 2023-07-20