|本期目录/Table of Contents|

[1]韩蕾蕾,张乐乐,王慧娟,等.丛枝菌根真菌对镉胁迫小麦褪黑素代谢的调节作用[J].江苏农业科学,2023,51(17):59-67.
 Han Lielei,et al.Regulation of melatonin metabolism in cadmium-stressed wheat by arbuscular mycorrhizal fungi [JY。]Han Lielei,et al(59)[J].Jiangsu Agricultural Sciences,2023,51(17):59-67.
点击复制

丛枝菌根真菌对镉胁迫小麦褪黑素代谢的调节作用(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第17期
页码:
59-67
栏目:
遗传育种与耕作栽培
出版日期:
2023-09-05

文章信息/Info

Title:
Regulation of melatonin metabolism in cadmium-stressed wheat by arbuscular mycorrhizal fungi [JY。]Han Lielei,et al(59)
作者:
韩蕾蕾张乐乐王慧娟腾慧鑫袁祖丽
河南农业大学生命科学学院,河南郑州 450002
Author(s):
Han Lieleiet al
关键词:
褪黑素丛枝菌根真菌小麦抗氧化
Keywords:
-
分类号:
S512.101
DOI:
-
文献标志码:
A
摘要:
为研究丛枝菌根真菌(AMF)是否通过对镉(Cd)胁迫小麦褪黑素(MLT)代谢的调节作用来增强小麦Cd耐性,以小麦和摩西球囊霉为试验材料,采用土培方法,研究Cd胁迫下接种AMF对小麦MLT代谢的调节作用。结果显示,Cd胁迫下接种AMF处理与同浓度Cd胁迫处理相比,小麦叶片5-羟色胺(5-HT)、5-甲氧基色胺(5-MT)、MLT及2-羟基褪黑素(2-HMT)含量均有不同程度的增加,MLT合成相关酶及分解相关酶的活性均有不同程度的提高,MLT的合成酶基因TaASMT1、TaASMT2、TaCOMT、TaSNAT及MLT的分解基因Ta2-ODD的表达水平均有不同程度上调。表明AMF可以通过上调Cd胁迫小麦内源MLT代谢相关基因表达水平来提高相应酶的活性,促进MLT的合成,同时加速MLT分解为2-HMT,缓解Cd胁迫造成的氧化伤害,增强小麦的Cd耐性。
Abstract:
-

参考文献/References:

[1]李建凤.土壤重金属污染现状及检测技术分析[J]. 化工设计通讯,2022,48(2):193-195.
[2]宋伟,陈百明,刘琳.中国耕地土壤重金属污染概况[J]. 水土保持研究,2013,20(2):293-298.
[3]Li J R,Xu Y M.Immobilization remediation of Cd-polluted soil with different water condition[J]. Journal of Environmental Management,2017,193:607-612.
[4]张芬琴,张红晓,沈振国.Cd胁迫下不同耐性豆科植物根内活性氧产生与基因组DNA多态性变化[J]. 生态学杂志,2012,31(9):2330-2336.
[5]Romero-Puertas M C,Palma J M,Gómez M,et al. Cadmium causes the oxidative modification of proteins in pea plants[J]. Plant,Cell & Environment,2002,25(5):677-686.
[6]Hasan M K,Ahammed G J,Yin L L,et al. Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis,vacuolar sequestration,and antioxidant potential in Solanum lycopersicum L[J]. Frontiers in Plant Science,2015,6:601.
[7]Hall J L.Cellular mechanisms for heavy metal detoxification and tolerance[J]. Journal of Experimental Botany,2002,53(366):1-11.
[8]Li H,Chang J J,Chen H J,et al. Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis[J]. Frontiers in Plant Science,2017,8:295.
[9]Hernández-Ruiz J,Arnao M.Relationship of melatonin and salicylic acid in biotic/abiotic plant stress responses[J]. Agronomy,2018,8(4):33.
[10]Shida C,Castrucci A M L,Lamy-Freund M T.High melatonin solubility in aqueous medium[J]. Journal of Pineal Research,1994,16(4):198-201.
[11]赵燕,王东华,赵曦阳.植物中褪黑素的研究进展[J]. 西北植物学报,2014,34(1):196-205.
[12]Li G Z,Wang Y Y,Liu J,et al. Exogenous melatonin mitigates cadmium toxicity through ascorbic acid and glutathione pathway in wheat[J]. Ecotoxicology and Environmental Safety,2022,237:113533.
[13]Kaya C,Okant M,Ugurlar F,et al. Melatonin-mediated nitric oxide improves tolerance to cadmium toxicity by reducing oxidative stress in wheat plants[J]. Chemosphere,2019,225:627-638.
[14]Tan D X,Manchester L C,Terron M P,et al. One molecule,many derivatives:a never-ending interaction of melatonin with reactive oxygen and nitrogen species?[J]. Journal of Pineal Research,2007,42(1):28-42.
[15]Tousi S,Zoufan P,Ghahfarrokhie A R.Alleviation of cadmium-induced phytotoxicity and growth improvement by exogenous melatonin pretreatment in mallow (Malva parviflora) plants[J]. Ecotoxicology and Environmental Safety,2020,206:111403.
[16]Sami A,Shah F A,Abdullah M,et al. Melatonin mitigates cadmium and aluminium toxicity through modulation of antioxidant potential in Brassica napus L.[J]. Plant Biology,2020,22(4):679-690.
[17]Wu S Q,Wang Y,Zhang J K,et al. Exogenous melatonin improves physiological characteristics and promotes growth of strawberry seedlings under cadmium stress[J]. Horticultural Plant Journal,2021,7(1):13-22.
[18]Arnao M B,Hernández-Ruiz J.Melatonin:a new plant hormone and/or a plant master regulator?[J]. Trends in Plant Science,2019,24(1):38-48.
[19]Shi H T,Tan D X,Reiter R J,et al. Melatonin induces class A1 heat-shock factors (HSFA1s) and their possible involvement of thermotolerance in Arabidopsis[J]. Journal of Pineal Research,2015,58(3):335-342.
[20]Back K,Tan D X,Reiter R J.Melatonin biosynthesis in plants:multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts[J]. Journal of Pineal Research,2016,61(4):426-437.
[21]Galano A,Tan D X,Reiter R J. Melatonin and related compounds:chemical insights into their protective effects against oxidative stress[J]. Current Organic Chemistry,2017,21(20):2077-2095.
[22]Prescott A G,John P.Dioxygenases:molecular structure and role in plant metabolism[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1996,47:245-271.
[23]Byeon Y,Lee H Y,Hwang O J,et al. Coordinated regulation of melatonin synthesis and degradation genes in rice leaves in response to cadmium treatment[J]. Journal of Pineal Research,2015,58(4):470-478.
[24]Wang J P,Yuan J H,Ren Q,et al. Arbuscular mycorrhizal fungi enhanced salt tolerance of Gleditsia sinensis by modulating antioxidant activity,ion balance and P/N ratio[J]. Plant Growth Regulation,2022,97(1):33-49.
[25]鲁薇,杨秀蓉,谭焱,等. 干旱胁迫下AMF对葡萄扦插苗生长及养分吸收的影响[J]. 中国南方果树,2022,51(2):129-133,138.
[26]Ghre V,Paszkowski U.Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation[J]. Planta,2006,223(6):1115-1122.
[27]Zhan F D,Li B,Jiang M,et al. Arbuscular mycorrhizal fungi enhance antioxidant defense in the leaves and the retention of heavy metals in the roots of maize[J]. Environmental Science and Pollution Research,2018,25(24):24338-24347.
[28]Begum N,Ahanger M A,Zhang L X.AMF inoculation and phosphorus supplementation alleviates drought induced growth and photosynthetic decline in Nicotiana tabacum by up-regulating antioxidant metabolism and osmolyte accumulation[J]. Environmental and Experimental Botany,2020,176:104088.
[29]Liu D,Zheng K Y,Wang Y,et al. Harnessing an arbuscular mycorrhizal fungus to improve the adaptability of a facultative metallophytic poplar (Populus yunnanensis) to cadmium stress:physiological and molecular responses[J]. Journal of Hazardous Materials,2022,424:127430.
[30]张华,孙纪全,包玉英.丛枝菌根真菌影响植物次生代谢产物的研究进展[J]. 农业生物技术学报,2015,23(8):1093-1103.
[31]刘茵,孟自力.黄淮中部小麦干旱的发生规律及成因分析:以商丘市为例[J]. 安徽农业科学,2018,46(16):164-166.
[32]沈凤斌.含镉小麦再敲土壤污染警钟[J]. 生态经济,2017,33(9):10-13.
[33]Ke Q B, Ye Jun, Wang B M, et al. Melatonin mitigates salt stress in wheat seedlings by modulating polyamine metabolism[J]. Frontiers in Plant Science, 2018, 9: 914.
[34]Poghosyan G H,Mukhaelyan Z H,Vardevanyan P H. Influence of cadmium ions on growth and antioxidant system activity of wheat (Triticum aestivum L.) seedlings[J]. International Journal of Scientific Research in Environmental Sciences,2014,2(10):371-378.
[35]Ma L,Huang Z L,Li S Y,et al. Melatonin and nitrogen applications modulate early growth and related physio-biochemical attributes in maize under Cd stress[J]. Journal of Soil Science and Plant Nutrition,2021,21(2):978-990.
[36]Li H,Chen X W,Wu L,et al. Effects of arbuscular mycorrhizal fungi on redox homeostasis of rice under Cd stress[J]. Plant and Soil,2020,455(1/2):121-138.
[37]Faria J M S,Pinto A P,Teixeira D,et al. Diversity of native arbuscular mycorrhiza extraradical mycelium influences antioxidant enzyme activity in wheat grown under Mn toxicity[J]. Bulletin of Environmental Contamination and Toxicology,2022,108(3):451-456.
[38]He L,Li C Y,Liu R J.Indirect interactions between arbuscular mycorrhizal fungi and Spodoptera exigua alter photosynthesis and plant endogenous hormones[J]. Mycorrhiza,2017,27(6):525-535.
[39]Campos C,Nobre T,Goss M J,et al. Transcriptome analysis of wheat roots reveals a differential regulation of stress responses related to arbuscular mycorrhizal fungi and soil disturbance[J]. Biology,2019,8(4):93.
[40]Chen J,Zhang H Q,Zhang X L,et al. Arbuscular mycorrhizal symbiosis mitigates oxidative injury in black locust under salt stress through modulating antioxidant defence of the plant[J]. Environmental and Experimental Botany,2020,175:104034.
[41]Cui G J,Ai S Y,Chen K,et al. Arbuscular mycorrhiza augments cadmium tolerance in soybean by altering accumulation and partitioning of nutrient elements,and related gene expression[J]. Ecotoxicology and Environmental Safety,2019,171:231-239.
[42]Yang X,Qin J H,Li J C,et al. Upland rice intercropping with Solanum nigrum inoculated with arbuscular mycorrhizal fungi reduces grain Cd while promoting phytoremediation of Cd-contaminated soil[J]. Journal of Hazardous Materials,2021,406:124325.
[43]Sun S S,Wen D,Yang W Y,et al. Overexpression of caffeic acid O-methyltransferase 1 (COMT1) increases melatonin level and salt stress tolerance in tomato plant[J]. Journal of Plant Growth Regulation,2020,39(3):1221-1235.
[44]Yan Y Y,Sun S S,Zhao N,et al. COMT1 overexpression resulting in increased melatonin biosynthesis contributes to the alleviation of carbendazim phytotoxicity and residues in tomato plants[J]. Environmental Pollution,2019,252:51-61.
[45]Wang L,Feng C,Zheng X D,et al. Plant mitochondria synthesize melatonin and enhance the tolerance of plants to drought stress[J]. Journal of Pineal Research,2017,63(3):e12429.
[46]Byeon Y,Back K.Molecular cloning of melatonin 2-hydroxylase responsible for 2-hydroxymelatonin production in rice (Oryza sativa)[J]. Journal of Pineal Research,2015,58(3):343-351.
[47]Yu Y,Teng Z W,Mou Z M,et al. Melatonin confers heavy metal-induced tolerance by alleviating oxidative stress and reducing the heavy metal accumulation in Exophiala pisciphila,a dark septate endophyte (DSE)[J]. BMC Microbiology,2021,21(1):40.
[48]Gu Q,Chen Z P,Yu X L,et al. Melatonin confers plant tolerance against cadmium stress via the decrease of cadmium accumulation and reestablishment of microRNA-mediated redox homeostasis[J]. Plant Science,2017,261:28-37.
[49]Byeon Y,Tan D X,Reiter R J,et al. Predominance of 2-hydroxymelatonin over melatonin in plants[J]. Journal of Pineal Research,2015,59(4):448-454.

相似文献/References:

[1]史景允,于伟红,梁秋生.蓖麻对镉污染土壤的修复潜力[J].江苏农业科学,2014,42(11):386.
 Shi Jingyun,et al(8).Potential repairing of cadmium contaminated soil by castor oil plant[J].Jiangsu Agricultural Sciences,2014,42(17):386.
[2]房春生,王帆,刘多,等.模拟酸雨对白菜体内铅、镉富集的影响[J].江苏农业科学,2013,41(08):323.
 Fang Chunsheng,et al.Effects of simulated acid rain on lead and cadmium accumulation in Brassica chinensis ssp. chinensis[J].Jiangsu Agricultural Sciences,2013,41(17):323.
[3]雷忻,郭兆权,延志莲,等.镉胁迫对泥鳅血清卵黄蛋白原的诱导作用[J].江苏农业科学,2013,41(09):321.
 Lei Xin,et al.Inductive effect of cadmium stress on serum vitellogenin in Misgurnus anguillicaudatus[J].Jiangsu Agricultural Sciences,2013,41(17):321.
[4]郭继斌,王莉,韩娇,等.联合浸提法测定土壤有效态镉[J].江苏农业科学,2016,44(03):369.
 Guo Jibin,et al.Determination of soil available Cd content by universal extraction method[J].Jiangsu Agricultural Sciences,2016,44(17):369.
[5]高华健,王玉祯,侯丹,等.锌调节镉胁迫水稻幼苗根系生长的生理机制[J].江苏农业科学,2013,41(12):48.
 Gao Huajian,et al.Physiological effect of zinc on growth of rice seedling roots under cadmium stress[J].Jiangsu Agricultural Sciences,2013,41(17):48.
[6]姚茹,黎小正.广西沿海主要贝类养殖区海水、表层沉积物及近江牡蛎体内重金属镉监测与评价[J].江苏农业科学,2014,42(01):316.
 Yao Ru,et al.Monitoring and comprehensive assessment of Cd in sea water,surface sediments and body of Crassostrea rivularis in main shellfish culture areas of Guangxi coastal waters[J].Jiangsu Agricultural Sciences,2014,42(17):316.
[7]王淑娟,刘文举,王立克,等.褪黑激素对雌性动物生殖系统调节作用的研究进展[J].江苏农业科学,2016,44(06):15.
 Wang Shujuan,et al.Research progress of regulating effect of mellocated atonin on female reproductive system[J].Jiangsu Agricultural Sciences,2016,44(17):15.
[8]刘标,尹红梅,陈薇,等.高效镉吸附菌株的筛选及生物学特性[J].江苏农业科学,2014,42(03):316.
 Liu Biao,et al.Screening and biological characteristics of strains with strong cadmium adsorption ability[J].Jiangsu Agricultural Sciences,2014,42(17):316.
[9]刘思思,高旋旋,胡竹青,等.镉诱导锦鲤肾脏氧化性DNA损伤及谷胱甘肽抗氧化系统改变[J].江苏农业科学,2016,44(02):272.
 Liu Sisi,et al.Cadmium induced renal oxidative DNA damage and glutathione antioxidant system change of brocade carp[J].Jiangsu Agricultural Sciences,2016,44(17):272.
[10]宋晓慧,陆引罡,何丹,等.烟草对镉的吸收及镉在亚细胞中的分布[J].江苏农业科学,2014,42(05):116.
 Song Xiaohui,et al.Absorbtion and subcellular distribution of cadmium in tobacco[J].Jiangsu Agricultural Sciences,2014,42(17):116.

备注/Memo

备注/Memo:
收稿日期:2022-12-04
基金项目:国家自然科学基金 (编号:31771730)。
作者简介:韩蕾蕾(1994—),女,河南周口人,硕士,从事镉污染修复小麦研究。E-mail:1678125333@qq.com。
通信作者:袁祖丽,博士,教授,从事丛枝菌根真菌对土壤重金属污染作物的生理、分子解毒机制研究。E-mail:zuliyuan@126.com。
更新日期/Last Update: 2023-09-05