|本期目录/Table of Contents|

[1]吴宇欣,蔡昌杨,唐诗蓓,等.植物响应低温的生长发育及分子机制研究进展[J].江苏农业科学,2023,51(19):1-9.
 Wu Yuxin,et al.Research progress on plant growth and molecular mechanism in response to low temperature[J].Jiangsu Agricultural Sciences,2023,51(19):1-9.
点击复制

植物响应低温的生长发育及分子机制研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第19期
页码:
1-9
栏目:
专论与综述
出版日期:
2023-10-05

文章信息/Info

Title:
Research progress on plant growth and molecular mechanism in response to low temperature
作者:
吴宇欣1蔡昌杨1唐诗蓓1谢裕红2王晓艳3朱强1
1.福建农林大学林学院,福建福州 350000; 2.福建省将乐县林业局,福建将乐 353300; 3.福建省三明市林业科技推广中心,福建三明 353000
Author(s):
Wu Yuxinet al
关键词:
植物低温胁迫ICE1基因CBF基因转基因
Keywords:
-
分类号:
S184
DOI:
-
文献标志码:
A
摘要:
低温作为一种主要的非生物胁迫,会使植物在生长过程中受到损伤,严重阻碍植物的正常生长和分布,并降低经济作物的产量,最终对自然界的稳定和社会生产活动产生不利影响。开展植物响应低温机制的相关研究具有重要的实践应用价值。本文综述在低温胁迫下植物冷驯化现象的发生及相关生理生化指标(如可溶性糖、脯氨酸、活性氧等)的变化,并着重介绍植物响应冷胁迫信号的网络调控机制,包括CBF依赖型信号转导途径和非CBF依赖型信号转导途径。具体描述CBF依赖型信号转导途径中最重要的ICE1-CBF-COR信号级联通路,CBF转录调控的正、负调控以及调控途径中的转录后调控、翻译后调控等方面内容。归纳目前基于基因工程技术提高水稻、玉米、小麦、番茄等农业作物抗寒性的研究进展,旨在为进一步提高植物抗寒性和培育耐寒植物新品种提供一定的参考。
Abstract:
-

参考文献/References:

[1]Zhu J K. Abiotic stress signaling and responses in plants[J]. Cell,2016,167(2):313-324.
[2]Agurla S,Gahir S,Munemasa S,et al. Mechanism of stomatal closure in plants exposed to drought and cold stress[J]. Advances in Experimental Medicine and Biology,2018,1081:215-232.
[3]Song Y,Feng L,Alyafei M A M,et al. Function of chloroplasts in plant stress responses[J]. International Journal of Molecular Sciences,2021,22(24):13464.
[4]You J,Chan Z L. ROS regulation during abiotic stress responses in crop plants[J]. Frontiers in Plant Science,2015,6:1092.
[5]Ding Y L,Shi Y T,Yang S H. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants[J]. New Phytologist,2019,222(4):1690-1704.
[6]Hosseinifard M,Stefaniak S,Ghorbani Javid M,et al. Contribution of exogenous proline to abiotic stresses tolerance in plants:a review[J]. International Journal of Molecular Sciences,2022,23(9):5186.
[7]Ruelland E,Vaultier M N,Zachowski A,et al. Chapter 2 cold signalling and cold acclimation in plants[J]. Advances in Botanical Research,2009,49:35-150.
[8]Akmar A S N,Mohamad A A,Kobra Y. Fine-tuning cold stress response through regulated cellular abundance and mechanistic actions of transcription factors[J]. Frontiers in Plant Science,2022,13:850216.
[9]刘辉,李德军,邓治. 植物应答低温胁迫的转录调控网络研究进展[J]. 中国农业科学,2014,47(18):3523-3533.
[10]Barrero-Gil J,Salinas J. Gene regulatory networks mediating cold acclimation:the CBF pathway[J]. Advances in Experimental Medicine and Biology,2018,1081:3-22.
[11]Hwarari D,Guan Y L,Ahmad B,et al. ICE-CBF-COR signaling cascade and its regulation in plants responding to cold stress[J]. International Journal of Molecular Sciences,2022,23(3):1549.
[12]Boyce J M,Knight H,Deyholos M,et al. The sfr6 mutant of Arabidopsis is defective in transcriptional activation via CBF/DREB1 and DREB2 and shows sensitivity to osmotic stress[J]. The Plant Journal,2003,34(4):395-406.
[13]Kidokoro S,Shinozaki K,Yamaguchi-Shinozaki K. Transcriptional regulatory network of plant cold-stress responses[J]. Trends in Plant Science,2022,27(9):922-935.
[14]Guo X Y,Liu D F,Chong K. Cold signaling in plants:insights into mechanisms and regulation[J]. Journal of Integrative Plant Biology,2018,60(9):745-756.
[15]Chinnusamy V,Zhu J H,Zhu J K. Cold stress regulation of gene expression in plants[J]. Trends in Plant Science,2007,12(10):444-451.
[16]Fürtauer L,Weiszmann J,Weckwerth W,et al. Dynamics of plant metabolism during cold acclimation[J]. International Journal of Molecular Sciences,2019,20(21):5411.
[17]Tarkowski  P,van den Ende W. Cold tolerance triggered by soluble sugars:a multifaceted countermeasure[J]. Frontiers in Plant Science,2015,6:203.
[18]Verbruggen N,Hermans C. Proline accumulation in plants:a review[J]. Amino Acids,2008,35(4):753-759.
[19]Wei Y L,Chen H Z,Wang L,et al. Cold acclimation alleviates cold stress-induced PSⅡ inhibition and oxidative damage in tobacco leaves[J]. Plant Signaling & Behavior,2022,17(1):2013638.
[20]Shen W,Nada K,Tachibana S. Involvement of polyamines in the chilling tolerance of cucumber cultivars[J]. Plant Physiology,2000,124(1):431-439.
[21]和红云,田丽萍,薛琳. 植物抗寒性生理生化研究进展[J]. 天津农业科学,2007,13(2):10-13.
[22]李文明,辛建攀,魏驰宇,等. 植物抗寒性研究进展[J]. 江苏农业科学,2017,45(12):6-11.
[23]Vanková R,Kosová K,Dobrev P,et al. Dynamics of cold acclimation and complex phytohormone responses in Triticum monococcum lines G3116 and DV92 differing in vernalization and frost tolerance level[J]. Environmental and Experimental Botany,2014,101:12-25.
[24]丁杨林,施怡婷,杨淑华. 植物响应低温胁迫的分子机制研究[J]. 生命科学,2015,27(3):398-405.
[25]丁红映,王明,谢洁,等. 植物低温胁迫响应及研究方法进展[J]. 江苏农业科学,2019,47(14):31-36.
[26]Theocharis A,Clément C,Barka E A. Physiological and molecular changes in plants grown at low temperatures[J]. Planta,2012,235(6):1091-1105.
[27]Soualiou S,Duan F Y,Li X,et al. Crop production under cold stress:an understanding of plant responses,acclimation processes,and management strategies[J]. Plant Physiology and Biochemistry,2022,190:47-61.
[28]Nagao M,Minami A,Arakawa K,et al. Rapid degradation of starch in chloroplasts and concomitant accumulation of soluble sugars associated with ABA-induced freezing tolerance in the moss Physcomitrella patens[J]. Journal of Plant Physiology,2005,162(2):169-180.
[29]Alvarez M E,Savouré A,Szabados L. Proline metabolism as regulatory hub[J]. Trends in Plant Science,2022,27(1):39-55.
[30]刘次桃,王威,毛毕刚,等. 水稻耐低温逆境研究:分子生理机制及育种展望[J]. 遗传,2018,40(3):171-185.
[31]Mittler R. ROS are good[J]. Trends in Plant Science,2017,22(1):11-19.
[32]Mhamdi A,van Breusegem F. Reactive oxygen species in plant development[J]. Development,2018,145(15):dev164376.
[33]Kazemi-Shahandashti S S,Maali-Amiri R. Global insights of protein responses to cold stress in plants:signaling,defence,and degradation[J]. Journal of Plant Physiology,2018,226:123-135.
[34]Ritonga F N,Chen S. Physiological and molecular mechanism involved in cold stress tolerance in plants[J]. Plants,2020,9(5):560.
[35]Demidchik V,Straltsova D,Medvedev S S,et al. Stress-induced electrolyte leakage:the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment[J]. Journal of Experimental Botany,2014,65(5):1259-1270.
[36]Zhou M Q,Shen C,Wu L H,et al. CBF-dependent signaling pathway:a key responder to low temperature stress in plants[J]. Critical Reviews in Biotechnology,2011,31(2):186-192.
[37]Wang X P,Song Q P,Liu Y,et al. Correction to:the network centered on ICEs play roles in plant cold tolerance,growth and development[J]. Planta,2022,255(4):89.
[38]计淑霞,戴绍军,刘炜. 植物应答低温胁迫机制的研究进展[J]. 生命科学,2010,22(10):1013-1019.
[39]Li W,Chen Y,Ye M H,et al. Evolutionary history of the C-repeat binding factor/dehydration-responsive element-binding 1 (CBF/DREB1) protein family in 43 plant species and characterization of CBF/DREB1 proteins in Solanum tuberosum[J]. BMC Evolutionary Biology,2020,20(1):1-14.
[40]Gilmour S J,Fowler S G,Thomashow M F. Arabidopsis transcriptional activators CBF1,CBF2,and CBF3 have matching functional activities[J]. Plant Molecular Biology,2004,54(5):767-781.
[41]Zhao C Z,Zhang Z J,Xie S J,et al. Mutational evidence for the critical role of CBF2 transcription factors in cold acclimation in Arabidopsis[J]. Plant Physiology,2016,171(4):2744-2759.
[42]Novillo F,Medina J,Salinas J. Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(52):21002-21007.
[43]Novillo F,Alonso J M,Ecker J R,et al. CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A/ expression and plays a central role in stress tolerance in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(11):3985-3990.
[44]Liu Q,Kasuga M,Sakuma Y,et al. Two transcription factors,DREB1 and DREB2,with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression,respectively,in Arabidopsis[J]. The Plant Cell,1998,10(8):1391-1406.
[45]Liu Y K,Dang P Y,Liu L X,et al. Cold acclimation by the CBF-COR pathway in a changing climate:lessons from Arabidopsis thaliana[J]. Plant Cell Reports,2019,38(5):511-519.
[46]Chinnusamy V,Ohta M,Kanrar S,et al. ICE1:a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis[J]. Genes & Development,2003,17(8):1043-1054.
[47]Kurbidaeva A,Ezhova T,Novokreshchenova M. Arabidopsis thaliana ICE2 gene:phylogeny,structural evolution and functional diversification from ICE1[J]. Plant Science,2014,229:10-22.
[48]Kim Y S,Lee M,Lee J H,et al. The unified ICE-CBF pathway provides a transcriptional feedback control of freezing tolerance during cold acclimation in Arabidopsis[J]. Plant Molecular Biology,2015,89(1):187-201.
[49]Zhou L,He Y J,Li J,et al. An eggplant SmICE1a gene encoding MYC-type ICE1-like transcription factor enhances freezing tolerance in transgenic Arabidopsis thaliana[J]. Plant Biology,2020,22(3):450-458.
[50]Doherty C J,van Buskirk H A,Myers S J,et al. Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance[J]. The Plant Cell,2009,21(3):972-984.
[51]于好强,孙福艾,冯文奇,等. 转录因子BES1/BZR1调控植物生长发育及抗逆性[J]. 遗传,2019,41(3):206-214.
[52]Li H,Ye K Y,Shi Y T,et al. BZR1 positively regulates freezing tolerance via CBF-dependent and CBF-independent pathways in Arabidopsis[J]. Molecular Plant,2017,10(4):545-559.
[53]Agarwal M,Hao Y J,Kapoor A,et al. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance[J]. Journal of Biological Chemistry,2006,281(49):37636-37645.
[54]Vogel J T,Zarka D G,van Buskirk H A,et al. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis[J]. The Plant Journal,2005,41(2):195-211.
[55]Shi Y T,Tian S W,Hou L Y,et al. Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-a ARR genes in Arabidopsis[J]. The Plant Cell,2012,24(6):2578-2595.
[56]Ding Y L,Shi Y T,Yang S H. Molecular regulation of plant responses to environmental temperatures[J]. Molecular Plant,2020,13(4):544-564.
[57]Knight H,Veale E L,Warren G J,et al. The sfr6 mutation in Arabidopsis suppresses low-temperature induction of genes dependent on the CRT/DRE sequence motif[J]. The Plant Cell,1999,11(5):875-886.
[58]Zhu J H,Shi H Z,Lee B H,et al. An Arabidopsis homeodomain transcription factor gene,HOS9,mediates cold tolerance through a CBF-independent pathway[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(26):9873-9878.
[59]Lee B H,Kapoor A,Zhu J H,et al. STABILIZED1,a stress-upregulated nuclear protein,is required for pre-mRNA splicing,mRNA turnover,and stress tolerance in Arabidopsis[J]. The Plant Cell,2006,18(7):1736-1749.
[60]Dong C H,Hu X Y,Tang W P,et al. A putative Arabidopsis nucleoporin,AtNUP160,is critical for RNA export and required for plant tolerance to cold stress[J]. Molecular and Cellular Biology,2006,26(24):9533-9543.
[61]Gong Z Z,Lee H,Xiong L M,et al. RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance[J]. Proceedings of the National Academy of Sciences of the United States of America,2002,99(17):11507-11512.
[62]Kwon S J,Choi E Y,Choi Y J,et al. Proteomics studies of post-translational modifications in plants[J]. Journal of Experimental Botany,2006,57(7):1547-1551.
[63]Ding Y L,Li H,Zhang X Y,et al. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis[J]. Developmental Cell,2015,32(3):278-289.
[64]Mishra N S,Tuteja R,Tuteja N. Signaling through MAP kinase networks in plants[J]. Archives of Biochemistry and Biophysics,2006,452(1):55-68.
[65]Chen J,Wang L H,Yuan M. Update on the roles of rice MAPK cascades[J]. International Journal of Molecular Sciences,2021,22(4):1679.
[66]Rodriguez M C S,Petersen M,Mundy J. Mitogen-activated protein kinase signaling in plants[J]. Annual Review of Plant Biology,2010,61:621-649.
[67]Teige M,Scheikl E,Eulgem T,et al. The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis[J]. Molecular Cell,2004,15(1):141-152.
[68]Zhao C Z,Wang P C,Si T,et al. MAP kinase cascades regulate the cold response by modulating ICE1 protein stability[J]. Developmental Cell,2017,43(5):618-629.
[69]兰秋艳,高媛,李衍常,等. 泛素、泛素链和蛋白质泛素化研究进展[J]. 生物工程学报,2016,32(1):14-30.
[70]Mazzucotelli E,Belloni S,Marone D,et al. The e3 ubiquitin ligase gene family in plants:regulation by degradation[J]. Current Genomics,2006,7(8):509-522.
[71]Dong C H,Agarwal M,Zhang Y Y,et al. The negative regulator of plant cold responses,HOS1,is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(21):8281-8286.
[72]Ghimire S,Tang X,Liu W G,et al. SUMO conjugating enzyme:a vital player of SUMO pathway in plants[J]. Physiology and Molecular Biology of Plants,2021,27(10):2421-2431.
[73]Xu Z,Chan H Y,Lam W L,et al. SUMO proteases:redox regulation and biological consequences[J]. Antioxidants & Redox Signaling,2009,11(6):1453-1484.
[74]Hay R T.Sumo:a history of modification[J]. Molecular Cell,2005,18(1):1-12.
[75]Miura K,Jin J B,Lee J,et al. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis[J]. The Plant Cell,2007,19(4):1403-1414.
[76]Yuan P G,Yang T B,Poovaiah B W. Calcium signaling-mediated plant response to cold stress[J]. International Journal of Molecular Sciences,2018,19(12):3896.
[77]Shi Y T,Ding Y L,Yang S H. Molecular regulation of CBF signaling in cold acclimation[J]. Trends in Plant Science,2018,23(7):623-637.
[78]孙卓婧,张安红,叶纪明. 转基因作物研发现状及展望[J]. 中国农业科技导报,2018,20(7):11-18.
[79]Liu C T,Schlppi M R,Mao B G,et al. The bZIP73 transcription factor controls rice cold tolerance at the reproductive stage[J]. Plant Biotechnology Journal,2019,17(9):1834-1849.
[80]Ito Y,Katsura K,Maruyama K,et al. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice[J]. Plant and Cell Physiology,2006,47(1):141-153.
[81]Yang A,Dai X Y,Zhang W H. A R2R3-type MYB gene,OsMYB2,is involved in salt,cold,and dehydration tolerance in rice[J]. Journal of Experimental Botany,2012,63(7):2541-2556.
[82]Hu H H,You J,Fang Y J,et al. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice[J]. Plant Molecular Biology,2008,67(1):169-181.
[83]Chen N,Xu Y Y,Wang X,et al. OsRAN2,essential for mitosis,enhances cold tolerance in rice by promoting export of intranuclear tubulin and maintaining cell division under cold stress[J]. Plant,Cell & Environment,2011,34(1):52-64.
[84]Ma H Z,Liu C,Li Z X,et al. ZmbZIP4 contributes to stress resistance in maize by regulating ABA synthesis and root development[J]. Plant Physiology,2018,178(2):753-770.
[85]Li M,Lin L,Zhang Y H,et al. ZmMYB31,a R2R3-MYB transcription factor in maize,positively regulates the expression of CBF genes and enhances resistance to chilling and oxidative stress[J]. Molecular Biology Reports,2019,46(4):3937-3944.
[86]Jiang H F,Shi Y T,Liu J Y,et al. Natural polymorphism of ZmICE1 contributes to amino acid metabolism that impacts cold tolerance in maize[J]. Nature Plants,2022,8(10):1176-1190.
[87]Yang Y F,Al-Baidhani H H J,Harris J,et al. DREB/CBF expression in wheat and barley using the stress-inducible promoters of HD-Zip I genes:impact on plant development,stress tolerance and yield[J]. Plant Biotechnology Journal,2020,18(3):829-844.
[88]Kovalchuk N,Jia W,Eini O,et al. Optimization of TaDREB3 gene expression in transgenic barley using cold-inducible promoters[J]. Plant Biotechnology Journal,2013,11(6):659-670.
[89]Amalraj A,Luang S,Kumar M Y,et al. Change of function of the wheat stress-responsive transcriptional repressor TaRAP2.1L by repressor motif modification[J]. Plant Biotechnology Journal,2016,14(2):820-832.
[90]Zhang L,Guo X Y,Zhang Z X,et al. Cold-regulated gene LeCOR413PM2 confers cold stress tolerance in tomato plants[J]. Gene,2021,764:145097.
[91]Zhang L Y,Jiang X C,Liu Q Y,et al. The HY5 and MYB15 transcription factors positively regulate cold tolerance in tomato via the CBF pathway[J]. Plant,Cell & Environment,2020,43(11):2712-2726.
[92]Wang D,Yang Z J,Wu M Q,et al. Enhanced brassinosteroid signaling via the overexpression of SlBRI1 positively regulates the chilling stress tolerance of tomato[J]. Plant Science,2022,320:111281.
[93] Wang G,Xu X,Wang H,et al. A tomato transcription factor,SlDREB3 enhances the tolerance to chilling in transgenic tomato[J]. Plant Physiology and Biochemistry,2019,142:254-262.
[94]Kumar K,Gambhir G,Dass A,et al. Genetically modified crops:current status and future prospects[J]. Planta,2020,251(4):91.

相似文献/References:

[1]王红亮,陈丽丽.低温胁迫对9种绿化树木相对电导率的影响[J].江苏农业科学,2013,41(04):167.
[2]沙向红,严建萍.低温胁迫对幼苗期棉花根系ADHa与BADH表达的影响[J].江苏农业科学,2013,41(08):37.
 Sha Xianghong,et al.Effect of low temperature stress on expression of ADHa and BADH gene in root of cotton seedlings[J].Jiangsu Agricultural Sciences,2013,41(19):37.
[3]张志,徐洪国,王世发,等.低温胁迫对黄瓜幼苗生理指标的影响[J].江苏农业科学,2013,41(05):126.
 Zhang Zhi,et al.Effect of low temperature stress on physiological indicators of cucumber seedings[J].Jiangsu Agricultural Sciences,2013,41(19):126.
[4]戴红燕,华劲松,张荣萍,等.低温胁迫对高原粳稻幼苗生长的影响[J].江苏农业科学,2014,42(11):85.
 Dai Hongyan,et al(8).Effect of low temperature stress on seedling growth of plateau japonica rice[J].Jiangsu Agricultural Sciences,2014,42(19):85.
[5]李孝凯,沙伟,国春晖,等.低温胁迫对毛尖紫萼藓、东亚砂藓生理生化及光合特性的影响[J].江苏农业科学,2014,42(10):355.
 Li Xiaokai,et al.Effects of low temperature stress on physiological,biochemical and photosynthetic characteristics of Grimmia pilifera and Racomitrium japonicum[J].Jiangsu Agricultural Sciences,2014,42(19):355.
[6]余莉琳,裴宗平,常晓华,等.干旱胁迫及复水对4种矿区生态修复草本植物生理特性的影响[J].江苏农业科学,2013,41(07):362.
 Yu Lilin,et al.Effects of drought stress and rewatering on physiological characteristics of several herbaceous plants with ecological restoration function[J].Jiangsu Agricultural Sciences,2013,41(19):362.
[7]侯丽霞.CaCl2浸种对低温胁迫下水稻幼苗生理指标的影响[J].江苏农业科学,2013,41(08):70.
 Hou Lixia,et al.Effect of soaking seeds with CaCl2 on physiological indicators of rice seedlings[J].Jiangsu Agricultural Sciences,2013,41(19):70.
[8]李红,唐永金,曾峰.高浓度锶、铯胁迫对植物叶绿素荧光特性的影响[J].江苏农业科学,2013,41(09):349.
 Li Hong,et al.Effects of high concentrations of strontium and cesium on chlorophyll fluorescence characteristics of plants[J].Jiangsu Agricultural Sciences,2013,41(19):349.
[9]巩子路,田童童,朱新荣,等.植物铁蛋白钙复合物的制备[J].江苏农业科学,2013,41(11):292.
 Gong Zilu,et al.Preparation of plant ferritin-calcium complexes[J].Jiangsu Agricultural Sciences,2013,41(19):292.
[10]赵妍,王旭和,韩春刚,等.8种观赏植物净化污水中总氮、总磷效果及景观配置[J].江苏农业科学,2013,41(12):348.
 Zhao Yan,et al.Purification effect of eight kinds of ornamental plants on total nitrogen and total phosphorus in domestic sewage and their landscape design[J].Jiangsu Agricultural Sciences,2013,41(19):348.

备注/Memo

备注/Memo:
收稿日期:2023-02-06
基金项目:国家自然科学基金(编号:31870660);福建农林大学林学学科建设项目(编号:72202200201)。
作者简介:吴宇欣(1997—),女,江苏镇江人,硕士研究生,主要从事林木遗传育种研究。E-mail:wuyuxin@fafu.edu.cn。
通信作者:朱强,博士,教授,主要从事林木遗传育种研究。E-mail:zhuqiang@fafu.edu.cn。
更新日期/Last Update: 2023-10-05