[1]周济. 智能制造——“中国制造2025”的主攻方向[J]. 中国机械工程,2015,26(17):2273-2284.
[2]刘成良,林洪振,李彦明,等. 农业装备智能控制技术研究现状与发展趋势分析[J]. 农业机械学报,2020,51(1):1-18.
[3]Barusu M,Reddy K,Shanmugapriya R,et al. Irrigation,fertilizing and weed cutting in the row crops with IoT controlled robot[J]. International Journal of Mechanical and Production Engineering Research and Development,2019,8(3):512-518.
[4]Pea C,Riao C,Moreno G. RobotGreen:a teleoperated agricultural robot for structured environments[J]. Journal of Engineering Science and Technology Review,2019,12(1):87-98.
[5]李建军,王岩,姜永成,等. 共享农机技术可行性研究——以圆捆机为例[J]. 中国农机化学报,2018,39(9):81-84.
[6]Sun D,Chen D,Wang S M,et al. A dynamic instability detection and prediction system for high clearance tractor[J]. IFAC,2016,49(16):50-54.
[7]Zhang Z Y. Flexible camera calibration by viewing a plane from unknown orientations[C]//Proceedings of the Seventh IEEE International Conference on Computer Vision.Kerkyra,2002:666-673.
[8]Cheein F A,Steiner G,Paina G P,et al. Optimized EIF-SLAM algorithm for precision agriculture mapping based on stems detection[J]. Computers and Electronics in Agriculture,2011,78(2):195-207.
[9]Veris launches U3 mobile soil sensor platform[EB/OL]. (2021-12-04)[2023-03-01]. https://www.globalagtechinitiative.com/in-field-technologies/sensors/veris-launches-u3-mobile-soil-sensor-platform/.
[10]Kksal ,Tekinerdogan B. Architecture design approach for IoT-based farm management information systems[J]. Precision Agriculture,2019,20(5):926-958.
[11]韩长杰,杨文奇,窦汉杰,等. 大田土壤电导率快速检测系统设计与试验[J]. 农业机械学报,2022,53(3):301-310.
[12]梁栋,胡丽娜,王秀,等. 车载式大田土壤电导率在线检测系统设计与试验[J]. 农业机械学报,2022,53(6):274-285.
[13]Alam M,Shakil K A,Khan S. Internet of things (IoT)[M]. Berlin:Springer,2020:273-284.
[14]Palleja T,Landers A J. Real time canopy density estimation using ultrasonic envelope signals in the orchard and vineyard[J]. Computers and Electronics in Agriculture,2015,115:108-117.
[15]姜红花,白鹏,刘理民,等. 履带自走式果园自动对靶风送喷雾机研究[J]. 农业机械学报,2016,47(增刊1):189-195.
[16]史东旭,高德民,薛卫,等. 基于物联网和大数据驱动的农业病虫害监测技术[J]. 南京农业大学学报,2019,42(5):967-974.
[17]Li S Y,Ding X Z,Kuang Q L,et al. Potential of UAV-based active sensing for monitoring rice leaf nitrogen status[J]. Frontiers in Plant Science,2018,9:1834.
[18]Suresh P,Saravanakumar U,Salameh M,et al. Advances in smart system technologies[C]. Singapore:Springer,2021:495-505.
[19]Kumar S,Mishra S,Khanna P. Precision sugarcane monitoring using SVM classifier[J]. Procedia Computer Science,2017,122:881-887.
[20]温鑫. 基于CAN总线的变量施肥机远程数据终端研究[D]. 大庆:黑龙江八一农垦大学,2022.
[21]姜鑫铭. 玉米免耕播种机精确播种关键技术研究[D]. 长春:吉林大学,2017.
[22]陈幸,贺智涛,姬江涛,等. 基于云平台的玉米播种位置监测系统设计与试验[J]. 农机化研究,2022,44(8):71-75.
[23]陈兴和,孙超,刘辉. 农机深松作业远程监测装备发展现状及建议[J]. 农业工程,2018,8(9):6-8.
[24]陈进,王学磊,王一帆. 基于Android手机的联合收获机主要部件工况监测系统[J]. 农业机械学报,2016,47(增刊1):203-207.
[25]杜志伟,郝凤琦,程广河,等. 基于物联网的农机状态监控系统研究[J]. 中国农机化学报,2019,40(11):189-194.
[26]Cortés C A P,Jaimes C I R,Moreno G G. RobotGreen:a teleoperated agricultural robot for structured environments[J]. Journal of Engineering Science and Technology Review,2019,12(1):87-98.
[27]Waleed M,Um T W,Kamal T,et al. Classification of agriculture farm machinery using machine learning and internet of things[J]. Symmetry,2021,13(3):403.
[28]雷雪梅,张光强,姚旗,等. 基于卷积神经网络的农机图像自动识别研究[J]. 中国农机化学报,2022,43(5):140-147.
[29]杨洋,温兴,马强龙,等. 基于贝塞尔曲线的动态识别区农机避障路径实时规划[J]. 农业工程学报,2022,38(6):34-43.
[30]Waleed M,Um T W,Kamal T,et al. Determining the precise work area of agriculture machinery using internet of things and artificial intelligence[J]. Applied Sciences,2020,10(10):3365.
[31]董胜,袁朝辉,谷超,等. 基于多学科技术融合的智能农机控制平台研究综述[J]. 农业工程学报,2017,33(8):1-11.
[32]王培,孟志军,尹彦鑫,等. 基于农机空间运行轨迹的作业状态自动识别试验[J]. 农业工程学报,2015,31(3):56-61.
[33]王至秋,员玉良,秦振朕. 基于物联网技术的农机作业参数采集器的设计与试验[J]. 农机化研究,2020,42(1):75-79.
[34]刘阳春,苑严伟,张俊宁,等. 深松作业远程管理系统设计与试验[J]. 农业机械学报,2016,47(增刊1):43-48.
[35]刘婞韬,牛康,李治国,等. 深松作业质量监测系统的设计与应用[J]. 中国农机化学报,2016,37(9):163-165,177.
[36]Lou S Y,He J,Lu C Y,et al. A tillage depth monitoring and control system for the independent adjustment of each subsoiling shovel[J]. Actuators,2021,10(10):250.
[37]Karimi H,Navid H,Besharati B,et al. A practical approach to comparative design of non-contact sensing techniques for seed flow rate detection[J]. Computers and Electronics in Agriculture,2017,142:165-172.
[38]Besharati B,Navid H,Karimi H,et al. Development of an infrared seed-sensing system to estimate flow rates based on physical properties of seeds[J]. Computers and Electronics in Agriculture,2019,162:874-881.
[39]Xie C J,Zhang D X,Yang L,et al. Precision seeding parameter monitoring system based on laser sensor and wireless serial port communication[J]. Computers and Electronics in Agriculture,2021,190:106429.
[40]GreenStarTM 3 commmand centerTM release notes[EB/OL]. (2015-08-04)[2023-03-03]. https://www.deere.com/en/stellarsupport/release_notes/greenstar3-commandcenter/.
[41]Oksanen T,Linkolehto R,Seilonen I. Adapting an industrial automation protocol to remote monitoring of mobile agricultural machinery:a combine harvester with IoT[J]. IFAC,2016,49(16):127-131.
[42]Blank S,Pfeiffer D. Real-time operator performance analysis in agricultural equipment[C]// 5th IFAC Conference on Sensing,Control and Automation Technologies for Agriculture Agricontrol. Seattle,2016:359-364.
[43]Sarri D,Martelloni L,Vieri M. Development of a prototype of telemetry system for monitoring the spraying operation in vineyards[J]. Computers and Electronics in Agriculture,2017,142:248-259.
[44]Cutini M,Costa C,Bisaglia C. Development of a simplified method for evaluating agricultural tractors operator whole body vibration[J]. Journal of Terramechanics,2016,63:23-32.
[45]Serap G,Eugenio C,Dennis M. Perceptions of tilt angles of an agricultural tractor[J]. Journal of Agromedicine,2014,19(1):5-14.
[46]Martínez C J,Arnó S J. Understanding geolocation and navigation and their uses in precision agriculture[J]. New AG International,2017,65:20-26.
[47]李道亮,杨昊. 农业物联网技术研究进展与发展趋势分析[J]. 农业机械学报,2018,49(1):1-20.
[48]Khanna A,Kaur S. Evolution of internet of things (IoT) and its significant impact in the field of precision agriculture[J]. Computers and Electronics in Agriculture,2019,157:218-231.
[49]刘志欣. 基于Zigbee的播种质量监控系统设计与试验[D]. 南京:南京农业大学,2014.
[50]Civelek C. Low power wide area network (lpwan) and internet of things adaptation in agricultural machinery[J]. Scholars Journal of Agriculture and Veterinary Sciences,2017,4(1):18-23.
[51]陈琦,韩冰,秦伟俊,等. 基于Zigbee/GPRS物联网网关系统的设计与实现[J]. 计算机研究与发展,2011,48(增刊2):367-372.
[52]万雪芬,郑涛,崔剑,等. 中小型规模智慧农业物联网终端节点设计[J]. 农业工程学报,2020,36(13):306-314.
[53]Navarro E,Costa N,Pereira A. A systematic review of IoT solutions for smart farming[J]. Sensors,2020,20(15):4231.
[54]Sladojevic S,Arsenovic M,Anderla A,et al. Deep neural networks based recognition of plant diseases by leaf image classification[J]. Computational Intelligence and Neuroscience,2016,2016:3289801.
[55]Faltinski S,Flatt H,Pethig F,et al. Detecting anomalous energy consumptions in distributed manufacturing systems[C]//IEEE 10th International Conference on Industrial Informatics.Beijing,2012:358-363.
[56]Steckel T,Bernardi A,Gu Y,et al. Anomaly detection and performance evaluation of mobile agricultural machines by analysis of big data[C]//Conference Agricultural Engineering.Hannover:EurAgEng,2015: 349-355.
[57]Catalano C,Paiano L,Calabrese F,et al. Anomaly detection in smart agriculture systems[J]. Computers in Industry,2022,143:103750.
[58]Paudyal S. Classification of rotating machinery fault using vibration signal[D]. Grand Forks: University of North Dakota,2019.
[59]Yin Y X,Zhao C J,Zhang Y W,et al. Development and application of subsoiling monitoring system based on edge computing using IoT architecture[J]. Computers and Electronics in Agriculture,2022,198:106976.
[60]Xiang M,Wei S,Zhang M,et al. Real-time monitoring system of agricultural machinery operation information based on ARM11 and GNSS[J]. IFAC,2016,49(16):121-126.
[61]翟长远,杨硕,王秀,等. 农机装备智能测控技术研究现状与展望[J]. 农业机械学报,2022,53(4):1-20.
[62]王涛,刘飞,高羽佳,等. 基于遗传算法与WiFi聚类算法结合的北斗农机精准调度[J]. 江苏大学学报(自然科学版),2020,41(4):426-433,445.
[63]李雯,白正玉,侯天龙,等. 农机设备信息化调度平台架构设计研究[J]. 江苏农业科学,2021,49(9):172-178.
[64]杨立国,李传友,贾生,等. 北京市农机管理调度系统设计与实现[J]. 农学学报,2014,4(8):96-100.
[65]王娜,张晓亮. 基于地理信息系统MapGIS的农机调度分配优化研究[J]. 农机化研究,2022,44(6):240-244.
[66]马军岩,袁逸萍,任年鲁,等. 多区域协调调度架构下的农机服务资源优化配置方法[J]. 中国农业大学学报,2020,25(4):113-122.
[67]Sun Z G,Xia H,Wang W S. An architecture for the agricultural machinery intelligent scheduling in cross-regional work based on cloud computing and internet of things[C]//International Conference on Computer and Computing Technologies in Agriculture.Berlin:Springer,2011:9-15.
[68]李洪,姚光强,陈立平. 基于GPS、GPRS和GIS的农机监控调度系统[J]. 农业工程学报,2008,24(增刊2):119-122.
[69]王春山,张璠,滕桂法,等. 智慧农机调配管理平台设计与实现[J]. 中国农机化学报,2018,39(1):61-68.
[70]Blender T,Buchner T,Fernandez B,et al. Managing a mobile agricultural robot swarm for a seeding task[C]//42nd Annual Conference of the IEEE Industrial Electronics Society.Florence,2016:6879-6886.
[71]刘基余. 关于北斗卫星导航系统技术标准化的几点建议[J]. 导航定位学报,2013,1(1):101-107.
[72]吕新,苑严伟,马富裕,等. 棉花集约化生产关键环节精准技术与装备研发应用[Z]. 石河子:石河子大学,2016:10-34.
[73]管孝锋,陆林峰,吴晓柯. 浙江省智慧农业云平台建设及应用[J]. 浙江农业科学,2020,61(3):595-597,601.
[74]吴东林,张玉华. 收割机远程监测系统的设计——基于云平台数据挖掘并行算法[J]. 农机化研究,2020,42(6):235-239.
[75]马俊飞. 基于物联网技术的农机车联网系统的研究与实现[D]. 青岛:青岛理工大学,2018.
[76]王少农,庄卫东,王熙. 农业机械远程监控管理信息系统研究[J]. 农机化研究,2015,37(6):264-268.
[77]Goltyapin V,Golubev I. Global trends in the development of monitoring systems for mobile agricultural equipment[J]. E3S Web of Conferences,2020,157:01013.
[78]New holland. Smart solutions for your operation[EB/OL]. (2023-03-01)[2023-03-01]. http://agriculture.newholland.com/en-us/nar/products/plm.
[79]叶文超,张小花,廖东东,等. 基于Android的农机调度与管理平台设计与应用[J]. 仲恺农业工程学院学报,2019,32(3):53-57.
[80]张正飞,杨松,康敏,等. 基于物联网的农机信息化平台设计与研发[J]. 南方农机,2018,49(15):4-7.
[81]王诚龙,王吉旭,葛宝玉,等. 北斗农机作业全信息质量在线监测终端[C]//卫星导航定位与北斗系统应用2017——深化北斗应用 开创中国导航新局面.北京:中国卫星导航定位协会,2017:186-190.
[1]刘家玉,周林杰,荀广连,等.基于物联网的智能农业管理系统研究与设计——以江苏省农业物联网平台为例[J].江苏农业科学,2013,41(05):377.
Liu Jiayu,et al.Investigation and design of intelligent agricultural management systems based on internet of things—Taking Agricultural Internet of Things in Jiangsu Province as an example[J].Jiangsu Agricultural Sciences,2013,41(1):377.
[2]徐海斌,王鸿翔,杨晓琳,等.现代农业中物联网应用现状与展望[J].江苏农业科学,2013,41(05):398.
Xu Haibin,et al.Current situation and forecast of application of internet of things in modern agriculture[J].Jiangsu Agricultural Sciences,2013,41(1):398.
[3]严利,燕斌.基于电力线载波的家禽养殖场环境监控终端设计[J].江苏农业科学,2013,41(12):402.
Yan Li,et al.Design of an environment monitoring terminal based on power line communication[J].Jiangsu Agricultural Sciences,2013,41(1):402.
[4]范郁尔,郑金生,张正球,等.基于物联网技术的蝴蝶兰生产测控系统[J].江苏农业科学,2014,42(01):369.
Fan Yuer,et al.A phalaenopsis production monitoring system based on things internet technology[J].Jiangsu Agricultural Sciences,2014,42(1):369.
[5]何玲,陈长喜.基于物联网技术的生猪屠宰自动化监管系统[J].江苏农业科学,2016,44(04):390.
He Ling,et al.Study on automatic supervision system of pig slaughtering based on internet of things[J].Jiangsu Agricultural Sciences,2016,44(1):390.
[6]李敏.基于物联网技术的农业环境监测系统研究与设计[J].江苏农业科学,2016,44(05):387.
Li Min.Research and design of agricultural environmental monitoring system based on internet of things[J].Jiangsu Agricultural Sciences,2016,44(1):387.
[7]赵璐莹,任振辉,王娟.基于物联网的有机蔬菜溯源系统[J].江苏农业科学,2016,44(02):427.
Zhao Luying,et al.Design of organic vegetable traceability system based on internet of things[J].Jiangsu Agricultural Sciences,2016,44(1):427.
[8]李舒,赵思健,张峭.智慧农险——农业保险信息化发展的展望[J].江苏农业科学,2016,44(01):7.
Li Shu,et al.Wisdom agricultural insurance-prospects of agricultural insurance informatization development[J].Jiangsu Agricultural Sciences,2016,44(1):7.
[9]朱科峰,曹静,梁万杰,等.物联网猪舍氨气浓度与环境数据的关系研究[J].江苏农业科学,2015,43(12):462.
Zhu Kefeng,et al.Study on relationship between ammonia concentration and environmental data in hog house based on internet of things[J].Jiangsu Agricultural Sciences,2015,43(1):462.
[10]张文宇,曹宏鑫,葛道阔,等.基于模型的智慧农业平台的构建[J].江苏农业科学,2015,43(12):478.
Zhang Wenyu,et al.Construction of smart agriculture platform based on model[J].Jiangsu Agricultural Sciences,2015,43(1):478.