[1]Ahluwalia O,Singh P C,Bhatia R. A review on drought stress in plants:implications,mitigation and the role of plant growth promoting rhizobacteria[J]. Resources,Environment and Sustainability,2021,5:100032.
[2]Hussein H A A,Alshammari S O,Kenawy S K M,et al. Grain-priming with L-arginine improves the growth performance of wheat (Triticum aestivum L.) plants under drought stress[J]. Plants,2022,11(9):1219.
[3]Khan N,Ali S,Tariq H,et al. Water conservation and plant survival strategies of rhizobacteria under drought stress[J]. Agronomy,2020,10(11):1683.
[4]Nasir M W,Toth Z. Effect of drought stress on potato production:a review[J]. Agronomy,2022,12(3):635.
[5]Oguz M C,Aycan M,Oguz E,et al.Drought stress tolerance in plants:interplay of molecular,biochemical and physiological responses in important development stages[J]. Physiologia,2022,2(4):180-197.
[6]Jia S J,Li H W,Jiang Y P,et al. Effects of drought on photosynthesis and ear development characteristics of maize[J]. Acta Ecologica Sinica,2020,40(3):854-863.
[7]Carneiro M,Farias M,Pinho C,et al. Antioxidant defense in sunflower against drought[J]. Journal of Experimental Agriculture International,2018,25(1):1-9.
[8]Oppenheimer-Shaanan Y,Jakoby G,Starr M L,et al. A dynamic rhizosphere interplay between tree roots and soil bacteria under drought stress[J]. eLife,2022,11:e79679.
[9]Xu Y,Zhang G C,Ding H,et al. Effects of salt and drought stresses on rhizosphere soil bacterial community structure and peanut yield[J]. Journal of Applied Ecology,2020,31(4):1305-1313.
[10]Breitkreuz C,Herzig L,Buscot F,et al. Interactions between soil properties,agricultural management and cultivar type drive structural and functional adaptations of the wheat rhizosphere microbiome to drought[J]. Environmental Microbiology,2021,23(10):5866-5882.
[11]Dubbels R,Reiter R J,Klenke E,et al. Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry[J]. Journal of Pineal Research,1995,18(1):28-31.
[12]Arnao M B,Hernández-Ruiz J. Melatonin:a new plant hormone and/or a plant master regulator?[J]. Trends in Plant Science,2019,24(1):38-48.
[13]Sharma A,Zheng B S. Melatonin mediated regulation of drought stress:physiological and molecular aspects[J]. Plants,2019,8(7):190.
[14]Hattori A,Migitaka H,Iigo M,et al. Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates[J]. Biochemistry and Molecular Biology International,1995,35(3):627-634.
[15]Li C,Zhao Q,Gao T T,et al. The mitigation effects of exogenous melatonin on replant disease in apple[J]. Journal of Pineal Research,2018,65(4):e12523.
[16]Gao T T,Liu Y S,Liu X M,et al. Exogenous dopamine and overexpression of the dopamine synthase gene MdTYDC alleviated apple replant disease[J]. Tree Physiology,2021,41(8):1524-1541.
[17]曾思洁,朱俊杰. 植物非叶组织器官光合作用研究进展[J]. 生态学杂志,2023,42(9):2241-2249.
[18]Reis L A C,de Oliveira J A,dos Santos Farnese F,et al. Chlorophyll fluorescence and water content parameters are good biomarkers for selecting drought tolerant eucalyptus clones[J]. Forest Ecology and Management,2021,481:118682.
[19]郝彦宾,王艳芬,崔骁勇. 干旱胁迫降低了内蒙古羊草草原的碳累积[J]. 植物生态学报,2010,34(8):898-906.
[20]Sun H,Wang X Q,Zeng Z L,et al. Exogenous melatonin strongly affects dynamic photosynthesis and enhances water-water cycle in tobacco[J]. Frontiers in Plant Science,2022,13:917784.
[21]Fleta-Soriano E,Díaz L,Bonet E,et al. Melatonin may exert a protective role against drought stress in maize[J]. Journal of Agronomy and Crop Science,2017,203(4):286-294.
[22]Luo Y,Hu T T,Huo Y,et al. Effects of exogenous melatonin on Chrysanthemum physiological characteristics and photosynthesis under drought stress[J]. Horticulturae,2023,9(1):106.
[23]Huang B,Chen Y E,Zhao Y Q,et al. Exogenous melatonin alleviates oxidative damages and protects photosystem Ⅱ in maize seedlings under drought stress[J]. Frontiers in Plant Science,2019,10:677.
[24]Zhang W,Wang X M,Pan Q M,et al. Hyperspectral response characteristics and chlorophyll content estimation of Phyllostachys violascens leaves under drought stress[J]. Acta Ecologica Sinica,2018,38(18):6677-6684.
[25]Liu B H,Liang J,Tang G M,et al. Drought stress affects on growth,water use efficiency,gas exchange and chlorophyll fluorescence of Juglans rootstocks[J]. Scientia Horticulturae,2019,250:230-235.
[26]陈龙涛,高润梅,石晓东. 干旱胁迫对华北落叶松和油松幼苗叶绿素含量与根系活力的影响[J]. 农学学报,2017,7(3):67-72.
[27]Ahmad S,Su W N,Kamran M,et al. Foliar application of melatonin delay leaf senescence in maize by improving the antioxidant defense system and enhancing photosynthetic capacity under semi-arid regions[J]. Protoplasma,2020,257(4):1079-1092.
[28]田雨菁,胡雅琦. 外源褪黑素对非生物胁迫下植物生长发育的影响[J]. 生物化工,2020,6(4):163-164,170.
[29]Chiango H,Figueiredo A,Sousa L,et al. Assessing drought tolerance of traditional maize genotypes of Mozambique using chlorophyll fluorescence parameters[J]. South African Journal of Botany,2021,138:311-317.
[30]Abraham E M,Huang B R,Bonos S A,et al. Evaluation of drought resistance for texas bluegrass,Kentucky bluegrass,and their hybrids[J]. Crop Science,2004,44(5):1746-1753.
[31]卢从明,张其德,匡廷云. 水分胁迫对小麦叶绿体激发能分配和光系统Ⅱ原初光能转换效率的影响[J]. 生物物理学报,1995,11(1):82-86.
[32]未晓巍,张祖衔,谈韫,等. 玉米毛状根再生植株光系统Ⅱ对干旱胁迫和复水处理的不同响应[J]. 吉林师范大学学报(自然科学版),2020,41(4):86-92.
[33]李春雨,陈春宇,毛浩田,等. 干旱胁迫下外源褪黑素对小麦生长和光系统活性的影响[J]. 麦类作物学报,2022,42(7):846-856.
[34]姜瑛,张辉红,魏畅,等. 外源褪黑素对干旱胁迫下玉米幼苗根系发育及生理生化特性的影响[J]. 草业学报,2023,32(9):143-159.
[35]杨新元. 外源褪黑素对干旱胁迫下向日葵幼苗生长、光合及抗氧化系统的影响[J]. 华北农学报,2019,34(4):113-121.
[36]Khan A,Numan M,Khan A L,et al. Melatonin:awakening the defense mechanisms during plant oxidative stress[J]. Plants,2020,9(4):407.
[37]Langaroudi I K,Piri S,Chaeikar S S,et al. Evaluating drought stress tolerance in different Camellia sinensis L. cultivars and effect of melatonin on strengthening antioxidant system[J]. Scientia Horticulturae,2023,307:111517.
[38]Gao W Y,Zhang Y J,Feng Z,et al. Effects of melatonin on antioxidant capacity in naked oat seedlings under drought stress[J]. Molecules,2018,23(7):1580.
[39]El-Yazied A A,Ibrahim M F M,Ibrahim M A R,et al. Melatonin mitigates drought induced oxidative stress in potato plants through modulation of osmolytes,sugar metabolism,ABA homeostasis and antioxidant enzymes[J]. Plants,2022,11(9):1151.
[40]Gill S S,Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry:PPB,2010,48(12):909-930.
[41]Liu J L,Wang W X,Wang L Y,et al. Exogenous melatonin improves seedling health index and drought tolerance in tomato[J]. Plant Growth Regulation,2015,77(3):317-326.
[42]王晶,伏兵哲,李淑霞,等. 外源褪黑素对干旱胁迫下沙芦草幼苗生长和生理特性的影响[J]. 应用生态学报,2023,34(11):2947-2957.
[43]Al-Yasi H,Attia H,Alamer K,et al. Impact of drought on growth,photosynthesis,osmotic adjustment,and cell wall elasticity in Damask rose[J]. Plant Physiology and Biochemistry,2020,150:133-139.
[44]Morgan J. Osmoregulation and water stress in higher plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1984,35:299-319.
[45]Fahad S,Bajwa A A,Nazir U,et al. Crop production under drought and heat stress:plant responses and management options[J]. Frontiers in Plant Science,2017,8:1147.
[46]李红叶,翟秀珍,张少聪,等. 外源褪黑素对干旱胁迫小麦发芽及幼苗生理特性的影响[J]. 西北农林科技大学学报(自然科学版),2021,49(6):75-84.
[47]张明聪,何松榆,秦彬,等. 外源褪黑素缓解干旱胁迫对春大豆苗期影响的生理调控效应[J]. 大豆科学,2020,39(5):742-750.
[48]Zhao W,Huang L M. Changes in soil nutrients and stoichiometric ratios reveal increasing phosphorus deficiency along a tropical soil chronosequence[J]. CATENA,2023,222:106893.
[49]Chen Y X,Hu C Y,Deng D H,et al. Factors affecting sorption behaviors of tetracycline to soils:importance of soil organic carbon,pH and Cd contamination[J]. Ecotoxicology and Environmental Safety,2020,197:110572.
[50]Liu Z M,Yang D Y,Zhang G T,et al. Effects of soil physical and chemical properties on the quality of Nanjing ‘Yuhua’ tea,a type of famous green tea[J]. Horticulturae,2023,9(2):189.
[51]Suseela V,Williams A,Gao C,et al. Root and rhizosphere processes under drought:digging deeper to enhance ecosystem resilience[J]. The Bulletin of the Ecological Society of America,2022,103(2):e01970.
[52]向君,樊利华,张楠楠,等. 施磷对干旱胁迫下箭竹根际土壤养分及微生物群落的影响[J]. 生态学报,2021,41(23):9422-9431.
[53]Deng Q,Cheng X L,Bowatte S,et al. Rhizospheric carbon-nitrogen interactions in a mixed-species pasture after 13 years of elevated CO2[J]. Agriculture,Ecosystems & Environment,2016,235:134-141.
[54]马成,裴子琦,白雪,等. 植物褪黑素功能及其作用机制的研究进展[J]. 寒旱农业科学,2023,2(10):883-888.
[55]董佳乐,许涵,解亚鑫,等. 氮添加对不同氮需求豆科植物幼苗根系形态性状和根叶养分含量的影响[J]. 生态学杂志,2024,43(5):1255-1262.
[56]Hazman M Y,Kabil F F. Maize root responses to drought stress depend on root class and axial position[J]. Journal of Plant Research,2022,135(1):105-120.
[57]Perlikowski D,Augustyniak A,Skirycz A,et al. Efficient root metabolism improves drought resistance of Festuca arundinacea[J]. Plant and Cell Physiology,2020,61(3):492-504.
[58]Echeverria A,Larrainzar E,Li W Q,et al. Medicago sativa and Medicago truncatula show contrasting root metabolic responses to drought[J]. Frontiers in Plant Science,2021,12:652143.
[59]Chang Q S,Zhang L X,Chen S C,et al. Exogenous melatonin enhances the yield and secondary metabolite contents of Prunella vulgaris by modulating antioxidant system,root architecture and photosynthetic capacity[J]. Plants,2023,12(5):1129.
[60]Dai L L,Li J,Harmens H,et al. Melatonin enhances drought resistance by regulating leaf stomatal behaviour,root growth and catalase activity in two contrasting rapeseed (Brassica napus L.) genotypes[J]. Plant Physiology and Biochemistry,2020,149:86-95.
[61]Wang Y F,Wang J R,Guo H X,et al. Integrative transcriptome and metabolome analysis reveals the mechanism of exogenous melatonin alleviating drought stress in maize roots[J]. Plant Physiology and Biochemistry,2023,199:107723.
[62]Liang C Z,Li A F,Yu H,et al. Melatonin regulates root architecture by modulating auxin response in rice[J]. Frontiers in Plant Science,2017,8:134.
[63]Du P H,Cao Y,Yin B Y,et al. Improved tolerance of apple plants to drought stress and nitrogen utilization by modulating the rhizosphere microbiome via melatonin and dopamine[J]. Frontiers in Microbiology,2022,13:980327.
[64]Zhao Z W,Wu Y,Chen W J,et al. Soil enzyme kinetics and thermodynamics in response to long-term vegetation succession[J]. The Science of the Total Environment,2023,882:163542.
[65]Maek S,Waz·ny R,Bońska E,et al.Soil fungal diversity and biological activity as indicators of fertilization strategies in a forest ecosystem after spruce disintegration in the Karpaty Mountains[J]. The Science of the Total Environment,2021,751:142335.
[66]Sanaullah M,Blagodatskaya E,Chabbi A,et al. Drought effects on microbial biomass and enzyme activities in the rhizosphere of grasses depend on plant community composition[J]. Applied Soil Ecology,2011,48(1):38-44.
[67]王理德,王方琳,郭春秀,等. 土壤酶学硏究进展[J]. 土壤,2016,48(1):12-21.
[68]Sardans J,Peuelas J. Drought decreases soil enzyme activity in a Mediterranean Quercus ilex L. forest[J]. Soil Biology and Biochemistry,2005,37(3):455-461.
[69]Berdugo M,Delgado-Baquerizo M,Soliveres S,et al. Global ecosystem thresholds driven by aridity[J]. Science,2020,367(6479):787-790.
[70]Zhang Q Y,Shao M G,Jia X X,et al. Changes in soil physical and chemical properties after short drought stress in semi-humid forests[J]. Geoderma,2019,338:170-177.
[71]Wang Y H,Yan D H,Wang J F,et al. Effects of elevated CO2 and drought on plant physiology,soil carbon and soil enzyme activities[J]. Pedosphere,2017,27(5):846-855.
[72]周来良. 干旱对根际土壤酶、氮磷钾及根部有机酸的影响[D]. 重庆:西南大学,2009:15-23.
[73]樊利华,周星梅,吴淑兰,等. 干旱胁迫对植物根际环境影响的研究进展[J]. 应用与环境生物学报,2019,25(5):1244-1251.
[74]谢丰璞,王楠,高静,等. 干旱胁迫下药用大黄根部药效成分及根际土壤微生物变化规律及其相互作用机制研究[J]. 中国中药杂志,2023,48(6):1498-1509.
[75]Kang J,Peng Y F,Xu W F.Crop root responses to drought stress:molecular mechanisms,nutrient regulations,and interactions with microorganisms in the rhizosphere[J]. International Journal of Molecular Sciences,2022,23(16):9310.
[76]Bailey V L,Smith J L,Bolton H. Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration[J]. Soil Biology and Biochemistry,2002,34(7):997-1007.
[77]Soares M,Rousk J. Microbial growth and carbon use efficiency in soil:links to fungal-bacterial dominance,SOC-quality and stoichiometry[J]. Soil Biology and Biochemistry,2019,131:195-205.
[78]Santos-Medellín C,Edwards J,Liechty Z,et al. Drought stress results in a compartment-specific restructuring of the rice root-associated microbiomes[J]. mBio,2017,8(4):e00764-e00717.
[79]Zhang C J,Wang F,Wang R H,et al. Drought stress affects bacterial community structure in the rhizosphere of Paeonia ostii ‘Feng Dan’[J]. The Journal of Horticultural Science and Biotechnology,2023,98(1):109-120.
[80]Naylor D,DeGraaf S,Purdom E,et al. Drought and host selection influence bacterial community dynamics in the grass root microbiome[J]. The ISME Journal,2017,11(12):2691-2704.
[81]Xu L,Coleman-Derr D. Causes and consequences of a conserved bacterial root microbiome response to drought stress[J]. Current Opinion in Microbiology,2019,49:1-6.
[82]Chen Y L,Yao Z M,Sun Y,et al. Current studies of the effects of drought stress on root exudates and rhizosphere microbiomes of crop plant species[J]. International Journal of Molecular Sciences,2022,23(4):2374.
[83]de Vries F T,Griffiths R I,Knight C G,et al. Harnessing rhizosphere microbiomes for drought-resilient crop production[J]. Science,2020,368(6488):270-274.
[84]Fitzpatrick C R,Copeland J,Wang P W,et al. Assembly and ecological function of the root microbiome across angiosperm plant species[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(6):E1157-E1165.
[85]王硕,邢亚娟,闫国永,等. 施氮对阔叶红松林土壤微生物多样性和群落结构的影响[J]. 东北林业大学学报,2023,51(10):106-112,120.
[86]Janas K M,Posmyk M M. Melatonin,an underestimated natural substance with great potential for agricultural application[J]. Acta Physiologiae Plantarum,2013,35(12):3285-3292.
[87]Jiang C Q,Cui Q R,Feng K,et al. Melatonin improves antioxidant capacity and ion homeostasis and enhances salt tolerance in maize seedlings[J]. Acta Physiologiae Plantarum,2016,38(4):82.
[88]魏茜雅,林欣琪,梁腊梅,等. 褪黑素引发处理提高朝天椒种子萌发及幼苗耐盐性的生理机制[J]. 江苏农业学报,2022,38(6):1637-1647.
[89]Madigan A P,Egidi E,Bedon F,et al. Bacterial and fungal communities are differentially modified by melatonin in agricultural soils under abiotic stress[J]. Frontiers in Microbiology,2019,10:2616.
[90]Xiao R H,Han Q,Liu Y,et al. Melatonin attenuates the urea-induced yields improvement through remodeling transcriptome and rhizosphere microbial community structure in soybean[J]. Frontiers in Microbiology,2022,13:903467.
[91]Koch R A,Yoon G M,Aryal U K,et al. Symbiotic nitrogen fixation in the reproductive structures of a basidiomycete fungus[J]. Current Biology,2021,31(17):3905-3914.e6.
[92]Zhang H S,Wu X H,Li G,et al. Interactions between arbuscular mycorrhizal fungi and phosphate-solubilizing fungus (Mortierella sp.) and their effects on Kostelelzkya virginica growth and enzyme activities of rhizosphere and bulk soils at different salinities[J]. Biology and Fertility of Soils,2011,47(5):543-554.
[93]Barka E A,Vatsa P,Sanchez L,et al. Taxonomy,physiology,and natural products of Actinobacteria[J]. Microbiology and Molecular Biology Reviews,2015,80(1):1-43.
[94]Santos-Medellín C,Liechty Z,Edwards J,et al. Prolonged drought imparts lasting compositional changes to the rice root microbiome[J]. Nature Plants,2021,7:1065-1077.
[95]Ye F,Jiang M,Zhang P,et al. Exogenous melatonin reprograms the rhizosphere microbial community to modulate the responses of barley to drought stress[J]. International Journal of Molecular Sciences,2022,23(17):9665.
[96]Jiang Y N,Wang W X,Xie Q J,et al. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi[J]. Science,2017,356(6343):1172-1175.
[1]张金然,缑艳霞,孙丽鹏.固氮螺菌157对玉米、向日葵的促生长作用[J].江苏农业科学,2014,42(12):116.
Zhang Jinran,et al.Effects of Azospirillum 157 on growth of maize and sunflower[J].Jiangsu Agricultural Sciences,2014,42(15):116.
[2]李光,龚宁.干旱胁迫对金线兰POD活性及同工酶酶谱的影响[J].江苏农业科学,2014,42(11):208.
Li Guang,et al(08).Effects of drought stress on activity and isoenzyme zymogram of POD in Anoectochilus roxburghii[J].Jiangsu Agricultural Sciences,2014,42(15):208.
[3]陈莹,钟理,赵丽丽,等.截叶铁扫帚种子萌发期对岩溶生境高钙干旱的生理生化反应[J].江苏农业科学,2014,42(09):335.
Chen Ying,et al.Physiological and biochemical responses of Lespedeza cuneata seedlings to different calcium and drought stresses in karst habitats[J].Jiangsu Agricultural Sciences,2014,42(15):335.
[4]余莉琳,裴宗平,常晓华,等.干旱胁迫及复水对4种矿区生态修复草本植物生理特性的影响[J].江苏农业科学,2013,41(07):362.
Yu Lilin,et al.Effects of drought stress and rewatering on physiological characteristics of several herbaceous plants with ecological restoration function[J].Jiangsu Agricultural Sciences,2013,41(15):362.
[5]岳莉然,孙妙婷.紫叶酢浆草光合特性及耐旱性研究[J].江苏农业科学,2013,41(08):169.
Yue Liran,et al.Study on photosynthetic characteristics and drought tolerance of Oxalis triangularis cv. purpurea[J].Jiangsu Agricultural Sciences,2013,41(15):169.
[6]李鹏,刘济明,颜强,等.干旱胁迫对小蓬竹繁殖和某些生理特性的影响[J].江苏农业科学,2014,42(08):181.
Li Peng,et al.Effects of drought stress on reproduction and some physiological characteristics of Drepanostachyum luodianense[J].Jiangsu Agricultural Sciences,2014,42(15):181.
[7]程小毛,罗翠芹.不同土壤水分处理对香樟幼苗生理特性的影响[J].江苏农业科学,2013,41(09):171.
Cheng Xiaomao,et al.Effects of different soil water treatments on physiological characteristics of Cinnamomum camphora seedlings[J].Jiangsu Agricultural Sciences,2013,41(15):171.
[8]杨阳,刘秉儒,贾倩民,等.赤霉素对干旱胁迫下沙冬青种子萌发的影响[J].江苏农业科学,2014,42(05):271.
Yang Yang,et al.Effect of gibberellin on seed germination of Ammopiptanthus mongolicus under drought stress[J].Jiangsu Agricultural Sciences,2014,42(15):271.
[9]于惠琳,史振声,丛玲,等.干旱胁迫下甜高粱和粒用高粱光合及生理响应比较[J].江苏农业科学,2014,42(02):72.
Yu Huilin,et al.Comparative photosynthetic and physiological response of sweet sorghum and grain sorghum under drought stress[J].Jiangsu Agricultural Sciences,2014,42(15):72.
[10]吴庆贵,杨敬天,邹利娟,等.珙桐幼苗生理生态特性对土壤干旱胁迫的响应[J].江苏农业科学,2014,42(02):119.
Wu Qinggui,et al.Effects of drought stress on physiological and biochemical parameters of Davidia involucrata[J].Jiangsu Agricultural Sciences,2014,42(15):119.