|本期目录/Table of Contents|

[1]王伟,隋秀玉,李晓晖,等.农林废弃物生物炭制备及其在土壤中的应用研究进展[J].江苏农业科学,2025,53(1):1-9.
 Wang Wei,et al.Research progress on preparation of biochar from agroforestry wastes and its application in soil[J].Jiangsu Agricultural Sciences,2025,53(1):1-9.
点击复制

农林废弃物生物炭制备及其在土壤中的应用研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第53卷
期数:
2025年第1期
页码:
1-9
栏目:
专论与综述
出版日期:
2025-01-05

文章信息/Info

Title:
Research progress on preparation of biochar from agroforestry wastes and its application in soil
作者:
王伟1隋秀玉12李晓晖2辛在军2李亮2王玺洋2何石福2孙小艳2
1.江西农业大学林学院,江西南昌 330045; 2.江西省科学院微生物研究所,江西南昌 330096
Author(s):
Wang Weiet al
关键词:
生物炭重金属农林废弃物土壤污染理化性质
Keywords:
-
分类号:
X53;X71;X72
DOI:
-
文献标志码:
A
摘要:
土壤作为大气和水体污染的最终受体,在我国工矿业不断发展及废弃物排放量持续增加的背景下,农田土壤质量呈现逐步减退态势,土壤污染问题日趋严峻。当前,我国农田土壤重金属污染现象较为普遍,给生态环境和人体健康带来了严重危害。农林废弃物生物质作为一种经济实惠且可持续的资源,将其转换为生物炭成为一种新型功能材料而备受瞩目。生物炭具备丰富的微孔结构、较大的比表面积和强大的吸附能力等独特的理化性质,已在土壤改良、土壤修复、土壤固碳和缓解气候变化等领域取得广泛应用。着重探讨了以农林废弃物为基体的生物炭生产方法(包括慢速热解、快速热解、气化、烘焙)、制备条件(如炭化温度、时间、方法、原材料等)对生物炭理化性质(如比表面积、孔隙结构、阳离子交换量、产量等)的影响,并阐述了农林废弃物生物炭在土壤修复、土壤改良和固碳等实际应用中的效果,最后对农林业生物炭的应用优势与潜在风险进行分析总结。
Abstract:
-

参考文献/References:

[1]Zeb A,Liu W T,Lian Y H,et al. Selection and breeding of pollution-safe cultivars (PSCs):an eco-friendly technology for safe utilization of heavy metal(loid) contaminated soils[J]. Environmental Technology & Innovation,2022,25:102142.
[2]王玉军,刘存,周东美,等. 客观地看待我国耕地土壤环境质量的现状:关于《全国土壤污染状况调查公报》中有关问题的讨论和建议[J]. 农业环境科学学报,2014,33(8):1465-1473.
[3]陈世宝,王萌,李杉杉,等. 中国农田土壤重金属污染防治现状与问题思考[J]. 地学前缘,2019,26(6):35-41.
[4]Noorbakhsh R,Koohi M K,Hassan J,et al. Magnetic beads of zero valent iron doped polyethersolfun developed for removal of arsenic from apatite-soil treated water[J]. International Journal of Environmental Research and Public Health,2022,19(19):12697.
[5]吴川,罗雨轩,薛生国,等. 铁/锰氧化菌诱导土壤重金属生物成矿研究进展[J]. 土壤学报,2023,60(4):953-968.
[6]Xu D M,Fu R B,Wang J X,et al. Chemical stabilization remediation for heavy metals in contaminated soils on the latest decade:available stabilizing materials and associated evaluation methods:a critical review[J]. Journal of Cleaner Production,2021,321:128730.
[7]Ibrahim E A,El-Sherbini M A A,Selim E M M. Effects of biochar,zeolite and mycorrhiza inoculation on soil properties,heavy metal availability and cowpea growth in a multi-contaminated soil[J]. Scientific Reports,2023,13(1):6621.
[8]Oumani A,Mandi L,Berrekhis F,et al. Removal of Cr3+from tanning effluents by adsorption onto phosphate mine waste:key parameters and mechanisms[J]. Journal of Hazardous Materials,2019,378:120718.
[9]Hashimoto Y,Matsufuru H,Sato T. Attenuation of lead leachability in shooting range soils using poultry waste amendments in combination with indigenous plant species[J]. Chemosphere,2008,73(5):643-649.
[10]Li S,Sun X Y,Liu Y X,et al. Remediation of Cd-contaminated soils by GWC application,evaluated in terms of Cd immobilization,enzyme activities,and pakchoi cabbage uptake[J]. Environmental Science and Pollution Research International,2020,27(9):9979-9986.
[11]茹淑华,赵欧亚,侯利敏,等. 8种钝化剂产品对不同镉污染土壤理化性质和镉有效性的影响[J]. 生态环境学报,2021,30(10):2085-2092.
[12] Safaei Khorram M,Zhang Q,Lin D L,et al. Biochar:a review of its impact on pesticide behavior in soil environments and its potential applications[J]. Journal of Environmental Sciences,2016,44:269-279.
[13]Liu H K,Xu F,Xie Y L,et al. Effect of modified coconut shell biochar on availability of heavy metals and biochemical characteristics of soil in multiple heavy metals contaminated soil[J]. Science of the Total Environment,2018,645:702-709.
[14]Kumar P S,Gayathri R,Rathi B S. A review on adsorptive separation of toxic metals from aquatic system using biochar produced from agro-waste[J]. Chemosphere,2021,285:131438.
[15]孟维山,朱芳妮,张博文,等. 玉米秸秆及其生物炭还田对黑土理化性质及玉米产量的影响[J]. 吉林农业大学学报,2024,46(5):721-730.
[16]Cui L Q,Noerpel M R,Scheckel K G,et al. Wheat straw biochar reduces environmental cadmium bioavailability[J]. Environment International,2019,126:69-75.
[17]Wang Z R,Cai X W,Xie X Y,et al. Visible-LED-light-driven photocatalytic degradation of ofloxacin and ciprofloxacin by magnetic biochar modified flower-like Bi2WO6:the synergistic effects,mechanism insights and degradation pathways[J]. Science of the Total Environment,2021,764:142879.
[18]Chen D Y,Zhuang X Z,Gan Z Y,et al. Co-pyrolysis of light bio-oil leached bamboo and heavy bio-oil:effects of mass ratio,pyrolysis temperature,and residence time on the biochar[J]. Chemical Engineering Journal,2022,437:135253.
[19]Zhu N Y,Li C Q,Bu L J,et al. Bismuth impregnated biochar for efficient estrone degradation:the synergistic effect between biochar and Bi/Bi2O3 for a high photocatalytic performance[J]. Journal of Hazardous Materials,2020,384:121258.
[20]Kushwaha R,Singh R S,Mohan D. Comparative study for sorption of arsenic on peanut shell biochar and modified peanut shell biochar[J]. Bioresource Technology,2023,375:128831.
[21]Uchimiya M,Wartelle L H,Klasson K T,et al. Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil[J]. Journal of Agricultural and Food Chemistry,2011,59(6):2501-2510.
[22]Qiu S,Chen C X,Wan S Q,et al. Microwave catalytic co-pyrolysis of sugarcane bagasse and Chlorella vulgaris over metal modified bio-chars:characteristics and bio-oil analysis[J]. Journal of Environmental Chemical Engineering,2023,11(5):110917.
[23]Park J H,Wang J J,Kim S H,et al. Cadmium adsorption characteristics of biochars derived using various pine tree residues and pyrolysis temperatures[J]. Journal of Colloid and Interface Science,2019,553:298-307.
[24]吴晓梅,叶美锋,吴飞龙,等. 农林废弃物生物炭的制备及其吸附性能[J]. 生物质化学工程,2023,57(4):27-33.
[25]Jing F Q,Sun Y Q,Liu Y Y,et al. Interactions between biochar and clay minerals in changing biochar carbon stability[J]. Science of the Total Environment,2022,809:151124.
[26]Liu W J,Jiang H,Yu H Q. Development of biochar-based functional materials:toward a sustainable platform carbon material[J]. Chemical Reviews,2015,115(22):12251-12285.
[27]Al Arni S. Comparison of slow and fast pyrolysis for converting biomass into fuel[J]. Renewable Energy,2018,124:197-201.
[28]Abdullah N,Mohd Taib R,Mohamad Aziz N S,et al. Banana pseudo-stem biochar derived from slow and fast pyrolysis process[J]. Heliyon,2023,9(1):e12940.
[29]Mahdi Z,El Hanandeh A,Yu Q M. Influence of pyrolysis conditions on surface characteristics and methylene blue adsorption of biochar derived from date seed biomass[J]. Waste and Biomass Valorization,2017,8(6):2061-2073.
[30]Tan Z X,Zou J H,Zhang L M,et al. Morphology,pore size distribution,and nutrient characteristics in biochars under different pyrolysis temperatures and atmospheres[J]. Journal of Material Cycles and Waste Management,2018,20(2):1036-1049.
[31]Solar J,de Marco I,Caballero B M,et al. Influence of temperature and residence time in the pyrolysis of woody biomass waste in a continuous screw reactor[J]. Biomass and Bioenergy,2016,95:416-423.
[32]Colantoni A,Evic N,Lord R,et al. Characterization of biochars produced from pyrolysis of pelletized agricultural residues[J]. Renewable and Sustainable Energy Reviews,2016,64:187-194.
[33]Mohanty P,Nanda S,Pant K K,et al. Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw,timothy grass and pinewood:effects of heating rate[J]. Journal of Analytical and Applied Pyrolysis,2013,104:485-493.
[34]Shen Q Q,Wu H W. Rapid pyrolysis of biochar prepared from slow and fast pyrolysis:the effects of particle residence time on char properties[J]. Proceedings of the Combustion Institute,2023,39(3):3371-3378.
[35]Chen D Y,Li Y J,Cen K H,et al. Pyrolysis polygeneration of poplar wood:effect of heating rate and pyrolysis temperature[J]. Bioresource Technology,2016,218:780-788.
[36]Leng L J,Huang H J. An overview of the effect of pyrolysis process parameters on biochar stability[J]. Bioresource Technology,2018,270:627-642.
[37]Peng F,He P W,Luo Y,et al. Adsorption of phosphate by biomass char deriving from fast pyrolysis of biomass waste[J]. CLEAN – Soil,Air,Water,2012,40(5):493-498.
[38]Zhao B,OConnor D,Zhang J L,et al. Effect of pyrolysis temperature,heating rate,and residence time on rapeseed stem derived biochar[J]. Journal of Cleaner Production,2018,174:977-987.
[39]Hassan M,Liu Y J,Naidu R,et al. Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents:a meta-analysis[J]. Science of the Total Environment,2020,744:140714.
[40]Shackley S,Esteinou R I,Hopkins D,et al. Biochar quality mandate (BQM) version 1.0[R]. Brotih Biochar Foundation,2014.
[41]付兵,杨兵,朱鹏飞,等. 烟梗热解气化制取生物炭方法探索[J]. 再生资源与循环经济,2016,9(10):41-44.
[42]Hu Q,Cheng W,Mao Q T,et al. Study on the physicochemical structure and gasification reactivity of chars from pyrolysis of biomass pellets under different heating rates[J]. Fuel,2022,314:122789.
[43]Yao Z Y,You S M,Ge T S,et al. Biomass gasification for syngas and biochar co-production:energy application and economic evaluation[J]. Applied Energy,2018,209:43-55.
[44]Muvhiiwa R,Kuvarega A,Llana E M,et al. Study of biochar from pyrolysis and gasification of wood pellets in a nitrogen plasma reactor for design of biomass processes[J]. Journal of Environmental Chemical Engineering,2019,7(5):103391.
[45]Singh A,Sharma R,Pant D,et al. Engineered algal biochar for contaminant remediation and electrochemical applications[J]. Science of the Total Environment,2021,774:145676.
[46]Wang X H,Wu J,Chen Y Q,et al. Comparative study of wet and dry torrefaction of corn stalk and the effect on biomass pyrolysis polygeneration[J]. Bioresource Technology,2018,258:88-97.
[47]Chen W H,Wang C W,Ong H C,et al. Torrefaction,pyrolysis and two-stage thermodegradation of hemicellulose,cellulose and lignin[J]. Fuel,2019,258:116168.
[48]Bai X P,Wang G H,Zhu Z,et al. Investigation of improving the yields and qualities of pyrolysis products with combination rod-milled and torrefaction pretreatment[J]. Renewable Energy,2020,151:446-453.
[49]Bach Q V,Chen W H,Chu Y S,et al. Predictions of biochar yield and elemental composition during torrefaction of forest residues[J]. Bioresource Technology,2016,215:239-246.
[50]Simonic M,Goricanec D,Urbancl D. Impact of torrefaction on biomass properties depending on temperature and operation time[J]. Science of the Total Environment,2020,740:140086.
[51]Kai X P,Meng Y X,Yang T H,et al. Effect of torrefaction on rice straw physicochemical characteristics and particulate matter emission behavior during combustion[J]. Bioresource Technology,2019,278:1-8.
[52]Zhang C Y,Ho S H,Chen W H,et al. Torrefaction performance and energy usage of biomass wastes and their correlations with torrefaction severity index[J]. Applied Energy,2018,220:598-604.
[53]Gholizadeh M,Hu X. Removal of heavy metals from soil with biochar composite:a critical review of the mechanism[J]. Journal of Environmental Chemical Engineering,2021,9(5):105830.
[54]Kavitha B,Reddy P V L,Kim B,et al. Benefits and limitations of biochar amendment in agricultural soils:a review[J]. Journal of Environmental Management,2018,227:146-154.
[55]Cheng S,Chen T,Xu W B,et al. Application research of biochar for the remediation of soil heavy metals contamination:a review[J]. Molecules,2020,25(14):3167.
[56]Wang M M,Zhu Y,Cheng L R,et al. Review on utilization of biochar for metal-contaminated soil and sediment remediation[J]. Journal of Environmental Sciences,2018,63:156-173.
[57]刘丽媛,李柯衡,贾永霞,等. 生物炭对小白菜镉铅积累及品质的影响[J]. 四川农业大学学报,2024,42(1):111-117.
[58]Wang Y,Zhong B,Shafi M,et al. Effects of biochar on growth,and heavy metals accumulation of moso bamboo (Phyllostachy pubescens),soil physical properties,and heavy metals solubility in soil[J]. Chemosphere,2019,219:510-516.
[59]Hamzenejad Taghlidabad R,Sepehr E. Heavy metals immobilization in contaminated soil by grape-pruning-residue biochar[J]. Archives of Agronomy and Soil Science,2018,64(8):1041-1052.
[60]Park J H,Cho J S,Ok Y S,et al. Comparison of single and competitive metal adsorption by pepper stem biochar[J]. Archives of Agronomy and Soil Science,2016,62(5):617-632.
[61]Zhao L,Zheng W,Maek O,et al. Roles of phosphoric acid in biochar formation:synchronously improving carbon retention and sorption capacity[J]. Journal of Environmental Quality,2017,46(2):393-401.
[62]Cheng J M,Yu L,Li T,et al. Effects of nanoscale carbon black modified by HNO3 on immobilization and phytoavailability of Ni in contaminated soil[J]. Journal of Chemistry,2015,2015:839069.
[63]李晓晖,艾仙斌,李亮,等. 新型改性稻壳生物炭材料对镉污染土壤钝化效果的研究[J]. 生态环境学报,2022,31(9):1901-1908.
[64]Bashir S,Zhu J,Fu Q L,et al. Comparing the adsorption mechanism of Cd by rice straw pristine and KOH-modified biochar[J]. Environmental Science and Pollution Research International,2018,25(12):11875-11883.
[65]Kumarathilaka P,Ahmad M,Herath I,et al. Influence of bioenergy waste biochar on proton-and ligand-promoted release of Pb and Cu in a shooting range soil[J]. Science of the Total Environment,2018,625:547-554.
[66]Lin L N,Li Z Y,Liu X W,et al. Effects of Fe-Mn modified biochar composite treatment on the properties of As-polluted paddy soil[J]. Environmental Pollution,2019,244:600-607.
[67]O’Connor D,Peng T Y,Li G H,et al. Sulfur-modified rice husk biochar:a green method for the remediation of mercury contaminated soil[J]. Science of the Total Environment,2018,621:819-826.
[68]Tusar H M,Uddin M K,Mia S,et al. Biochar-acid soil interactions:a review[J]. Sustainability,2023,15(18):13366.
[69]Wei B L,Peng Y C,Jeyakumar P,et al. Soil pH restricts the ability of biochar to passivate cadmium:a meta-analysis[J]. Environmental Research,2023,219:115110.
[70]韩晓日,葛银凤,李娜,等. 连续施用生物炭对土壤理化性质及氮肥利用率的影响[J]. 沈阳农业大学学报,2017,48(4):392-398.
[71]Xiao Y,Wang L Q,Zhao Z J,et al. Biochar shifts biomass and element allocation of legume-grass mixtures in Cd-contaminated soils[J]. Environmental Science and Pollution Research International,2020,27(10):10835-10845.
[72]Klinghoffer N B,Castaldi M J,Nzihou A.Influence of char composition and inorganics on catalytic activity of char from biomass gasification[J]. Fuel,2015,157:37-47.
[73]Liang C F,Gascó G,Fu S L,et al. Biochar from pruning residues as a soil amendment:effects of pyrolysis temperature and particle size[J]. Soil and Tillage Research,2016,164:3-10.
[74]高尚志,刘日月,窦森,等. 不同施量生物炭对土壤团聚体及其有机碳含量的影响[J]. 吉林农业大学学报,2022,44(4):421-430.
[75]Griffin D E,Wang D Y,Parikh S J,et al. Short-lived effects of walnut shell biochar on soils and crop yields in a long-term field experiment[J]. Agriculture,Ecosystems & Environment,2017,236:21-29.
[76]Rodríguez Solís A,Badilla Valverde Y,Moya R. Agronomic effects of Tectona grandis biochar from wood residues on the growth of young Cedrela odorata plants in a nursery[J]. Agronomy,2021,11(10):2079.
[77]Anto S,Karpagam R,Renukadevi P,et al. Biomass enhancement and bioconversion of brown marine microalgal lipid using heterogeneous catalysts mediated transesterification from biowaste derived biochar and bionanoparticle[J]. Fuel,2019,255:115789.
[78]Pokharel P,Kwak J H,Ok Y S,et al. Pine sawdust biochar reduces GHG emission by decreasing microbial and enzyme activities in forest and grassland soils in a laboratory experiment[J]. Science of the Total Environment,2018,625:1247-1256.
[79]Herath H M S K,Camps-Arbestain M,Hedley M J,et al. Experimental evidence for sequestering C with biochar by avoidance of CO2 emissions from original feedstock and protection of native soil organic matter[J]. GCB Bioenergy,2015,7(3):512-526.
[80]Kuzyakov Y,Subbotina I,Chen H Q,et al. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling[J]. Soil Biology and Biochemistry,2009,41(2):210-219.
[81]Yang W,Feng G,Miles D,et al. Impact of biochar on greenhouse gas emissions and soil carbon sequestration in corn grown under drip irrigation with mulching[J]. Science of the Total Environment,2020,729:138752.
[82]Yu J W,Song M D,Li Z P. Optimization of biochar preparation process and carbon sequestration effect of pruned wolfberry branches[J]. Green Processing and Synthesis,2022,11(1):423-434.
[83]Spokas K A,Koskinen W C,Baker J M,et al. Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil[J]. Chemosphere,2009,77(4):574-581.、

相似文献/References:

[1]蒯广东,李轶,方晓航,等.硫氧化菌生物淋滤修复重金属污染研究进展[J].江苏农业科学,2013,41(05):335.
 Kuai Guangdong,et al.Research progress on heavy metal pollution restoring by bioleaching of sulfur-oxidizing bacteria[J].Jiangsu Agricultural Sciences,2013,41(1):335.
[2]赖颖,赵锦慧,杨同文,等.发酵性结合酵母菌对重金属吸附能力的研究[J].江苏农业科学,2014,42(11):398.
 Lai Ying,et al(98).Study on adsorption capacity of fermentation of yeast to heavy metals[J].Jiangsu Agricultural Sciences,2014,42(1):398.
[3]吴少飞,丁竹红,胡忻,等.EDTA及其与柠檬酸交替对污染水稻土壤重金属元素的分步连续提取研究[J].江苏农业科学,2014,42(11):369.
 Wu Shaofei,et al(9).Study on sequential extraction of heavy metal from contaminated paddy soil using EDTA and citric acid[J].Jiangsu Agricultural Sciences,2014,42(1):369.
[4]李洋,游少鸿,林子雨,等.菖蒲对5种重金属富集能力的比较[J].江苏农业科学,2014,42(11):383.
 Li Yang,et al(8).Comparative study on enrichment capacity of calamus to five kinds of heavy metals[J].Jiangsu Agricultural Sciences,2014,42(1):383.
[5]周秦,黄剑林.ICP-MS法与石墨炉原子吸收法测定水中重金属含量的比较[J].江苏农业科学,2013,41(06):283.
 Zhou Qin,et al.Comparison of ICP-MS method and graphite furnace atomic absorption spectrometry in determination of heavy metals contents in water[J].Jiangsu Agricultural Sciences,2013,41(1):283.
[6]李恒,龙柱,冯群策.废纸脱墨污泥蚯蚓生物处理效应[J].江苏农业科学,2014,42(09):358.
 Li Heng,et al.Biological treatment effect of waste paper deinking sludge by earthworm[J].Jiangsu Agricultural Sciences,2014,42(1):358.
[7]刘贵巧,王永霞,王建明,等.4种食用菌中重金属含量及食用安全评价[J].江苏农业科学,2014,42(09):268.
 Liu Guiqiao,et al.Heavy metal contents and food safety assessment of 4 kinds of edible fungi[J].Jiangsu Agricultural Sciences,2014,42(1):268.
[8]邹烨燔,李勇,赵志忠,等.东寨港红树林沉积物重金属的垂向分异及污染评价[J].江苏农业科学,2014,42(08):327.
 Zou Yefan,et al.Vertical distribution and pollution assessment of heavy metals in sediment of Dongzhai Port mangroves[J].Jiangsu Agricultural Sciences,2014,42(1):327.
[9]牟新利,郭佳,刘少达,等.三峡库区农林土壤重金属形态分布与污染评价[J].江苏农业科学,2013,41(09):314.
 Mou Xinli,et al.Distribution of heave metals and pollution assessment of agriculture and forest soils in Three Gorges Reservoir Area[J].Jiangsu Agricultural Sciences,2013,41(1):314.
[10]王丽学,李振鹏,刘四平,等.玉米在不同覆盖方式处理下的土壤水温差异[J].江苏农业科学,2016,44(03):82.
 Wang Lixue,et al.Differences of soil moisture and temperature under different mulching treatments of maize[J].Jiangsu Agricultural Sciences,2016,44(1):82.
[11]梁仲哲,齐绍武,淡俊豪,等.生物炭对镉胁迫下烟草镉含量动态变化及土壤理化性质的影响[J].江苏农业科学,2018,46(1):56.
 Liang Zhongzhe,et al.Dynamic effects of biochar on Cd content in tobacco and soil physical and chemical properties under cadmium stress[J].Jiangsu Agricultural Sciences,2018,46(1):56.
[12]朱永琪,董天宇,宋江辉,等.生物炭影响土壤重金属生物有效性的研究进展[J].江苏农业科学,2018,46(16):9.
 Zhu Yongqi,et al.Research progress of effect of biochar on heavy metal bioavailability in soils[J].Jiangsu Agricultural Sciences,2018,46(1):9.
[13]刘邦煜,刘涛泽,叶春.贵阳市城市污泥特性及其热解制肥的可行性[J].江苏农业科学,2018,46(17):255.
 Liu Bangyu,et al.Characteristics of sewage sludge in Guiyang City and its feasibility of fertilizer production by pyrolysis[J].Jiangsu Agricultural Sciences,2018,46(1):255.
[14]陈望舒,房瑜静,秦端端,等.几种材料钝化土壤重金属能力的生物学检验[J].江苏农业科学,2019,47(09):293.
 Chen Wangshu,et al.Biological test of ability of several materials to passivate heavy metals in soil[J].Jiangsu Agricultural Sciences,2019,47(1):293.
[15]朱园芳,朱华军,刘玉学,等.2种生物炭对复合污染土壤中重金属形态的影响[J].江苏农业科学,2020,48(05):255.
 Zhu Yuanfang,et al.Effects of two kinds of biochar on forms of heavy metals in compound contaminated soil[J].Jiangsu Agricultural Sciences,2020,48(1):255.
[16]孙家婉,张振华,赵玉萍,等.生物炭改性及其在农田土壤重金属修复中的应用研究进展[J].江苏农业科学,2022,50(10):9.
 Sun Jiawan,et al.Research progress on biochar modification and its application in heavy metal remediation of farmland soil[J].Jiangsu Agricultural Sciences,2022,50(1):9.
[17]彭红宇,刘红恩,王秋红,等.低温生物炭和化肥配施对冬小麦生长和土壤铅镉生物有效性的影响[J].江苏农业科学,2023,51(4):212.
 Peng Hongyu,et al.Effects of combined application of low temperature biochar and chemical fertilizer on growth of winter wheat and bioavailability of Pb and Cd in soil[J].Jiangsu Agricultural Sciences,2023,51(1):212.

备注/Memo

备注/Memo:
收稿日期:2024-02-19
基金项目:江西省杰出青年人才资助计划(编号:20192BCB23026);江西省科学院包干制试点示范项目重大产业技术攻关专项(编号:2022YSBG10005);江西省科学院省级财政科研项目包干制项目-杰出青年人才培育计划(编号:2022YSBG50002)。
作者简介:王伟(1999—),女,江苏南通人,硕士研究生,主要从事土壤污染修复研究。E-mail:Jsntwangw@163.com。
通信作者:孙小艳,博士,研究员,主要从事土壤污染修复研究。E-mail:xiaoyan_sun05@163.com。
更新日期/Last Update: 2025-01-05