|本期目录/Table of Contents|

[1]崔东亚,杨美玲.降解组测序与剪切位点分析研究进展[J].江苏农业科学,2014,42(07):56-60.
 Cui Dongya,et al.Research progress of degradome sequencing and splice site analysis[J].Jiangsu Agricultural Sciences,2014,42(07):56-60.
点击复制

降解组测序与剪切位点分析研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第42卷
期数:
2014年07期
页码:
56-60
栏目:
生物技术
出版日期:
2014-07-25

文章信息/Info

Title:
Research progress of degradome sequencing and splice site analysis
作者:
崔东亚1 杨美玲2
1.运城学院生命科学系,山西运城 044000; 2.运城学院应用化学系,山西运城 044000
Author(s):
Cui Dongyaet al
关键词:
降解组miRNA靶基因剪切位点研究进展
Keywords:
-
分类号:
Q754
DOI:
-
文献标志码:
A
摘要:
动植物细胞内都存在大量的microRNA(miRNA),miRNA的功能之一是通过互补指导内切酶切割与之互补的mRNA,对该mRNA进行转录后调控。但miRNA与靶基因之间并不是完全互补,所以通过序列计算方式预测的靶基因中假阳性也是很高的。单独验证预测的靶基因不能确定是否正确且费时费力,高通量测序与计算预测结合可以很好地验证和发现miRNA的靶基因。介绍了寻找miRNA靶基因的降解组测序方法,包括降解组测序的方法原理、试验流程、miRNA靶基因寻找等主要环节。经研究发现,降解组测序已经成为寻找miRNA靶基因的常用方法。
Abstract:
-

参考文献/References:

[1]Bartel D P. MicroRNAs:genomics,biogenesis,mechanism,and function[J]. Cell,2004,116(2):281-297.
[2]Filipowicz W,Bhattacharyya S N,Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs:are the answers in sight[J]. Nature Reviews Genetics,2008,9(2):102-114.
[3]Meister G,Landthaler M,Patkaniowska A,et al. Human argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs[J]. Molecular Cell,2004,15(2):185-197.
[4]Schwarz D S,Tomari Y,Zamore P D. The RNA-induced silencing complex is a Mg2+-dependent endonuclease[J]. Current Biology,2004,14(9):787-791.
[5]Xiao F F,Zuo Z X,Cai G S,et al. MiRecords:an integrated resource for microRNA-target interactions[J]. Nucleic Acids Research,2009,37(Database issue):D105-D110.
[6]Jones-Rhoades M W,Bartel D P,Bartel B. MicroRNAs and their regulatory roles in plants[J]. Annu Rev Plant Biol,2006,57:19-53.
[7]Lewis B P,D P Bartel C S. Often flanked by adenosines,indicates that thousands of human genes are microRNA targets[J]. Cell,2005,120(1):15-20.
[8]Bartel D P. MicroRNAs:target recognition and regulatory functions[J]. Cell,2009,136(2):215-233.
[9]Farh K K,Grimson A,Jan C,et al. The widespread impact of mammalian microRNAs on mRNA repression and evolution[J]. Science,2005,310(5755):1817-1821.
[10]Friedman R C,Farh K K,Burge C B,et al. Most mammalian mRNAs are conserved targets of microRNAs[J]. Genome Research,2009,19(1):92-105.
[11]Reis-Filho J S. Next-generation sequencing[J]. Breast Cancer Res,2009,11(增刊):12-19.
[12]Moxon S,Jing R C,Szittya G,et al. Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening[J]. Genome Research,2008,18(10):1602-1609.
[13]Karlova R,van Haarst J C,Maliepaard C,et al. Identification of microRNA targets in tomato fruit development using high-throughput sequencing and degradome analysis[J]. Journal of Experimental Botany,2013,64(7):1863-1878.
[14]Zhao Y P,Xu Z H,Mo Q C,et al. Combined small RNA and degradome sequencing reveals novel miRNAs and their targets in response to low nitrate availability in maize[J]. Annals of Botany,2013,112(3):633-642.
[15]Yang X Y,Wang L C,Yuan D J,et al. Small RNA and degradome sequencing reveal complex miRNA regulation during cotton somatic embryogenesis[J]. Journal of Experimental Botany,2013,64(6):1521-1536.
[16]Xu X B,Yin L L,Ying Q C,et al. High-throughput sequencing and degradome analysis identify miRNAs and their targets involved in fruit senescence of Fragaria ananassa[J]. PLoS One,2013,8(8):e70959.
[17]Shuai P,Liang D,Zhang Z J,et al. Identification of drought-responsive and novel populus trichocarpa microRNAs by high-throughput sequencing and their targets using degradome analysis[J]. BMC Genomics,2013,14(6):233.
[18]Mao W H,Li Z Y,Xia X J,et al. A combined approach of high-throughput sequencing and degradome analysis reveals tissue specific expression of microRNAs and their targets in cucumber[J]. PLoS One,2012,7(3):e33040.
[19]Hao D C,Yang L,Xiao P G,et al. Identification of taxus microRNAs and their targets with high-throughput sequencing and degradome analysis[J]. Physiologia Plantarum,2012,146(4):388-403.
[20]An F M,Chan M T. Transcriptome-wide characterization of miRNA-directed and non-miRNA-directed endonucleolytic cleavage using degradome analysis under low ambient temperature in Phalaenopsis aphrodite subsp. formosana[J]. Plant & Cell Physiology,2012,53(10):1737-1750.
[21]Pantaleo V,Szittya G,Moxon S,et al. Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis[J]. The Plant Journal:for Cell and Molecular Biology,2010,62(6):960-976.
[22]Addo-Quaye C,Eshoo T W,Bartel D P,et al. Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome[J]. Current Biology,2008,18(10):758-762.
[23]Park J H,Ahn S,Kim S,et al. Degradome sequencing reveals an endogenous microRNA target in Caenorhabditis elegans[J]. FEBS Letters,2013,587(7):964-969.
[24]Yekta S,Shih I H,Bartel D P. MicroRNA-directed cleavage of HOXB8 mRNA[J]. Science,2004,304(5670):594-596.
[25]Sambrook J,Russell D W. Rapid amplification of 5′ cDNA ends (5′-RACE)[J]. CSH Protocols,2006(1):3989-3993.
[26]Pinto F L,Lindblad P. A guide for in-house design of template-switch-based 5′ rapid amplification of cDNA ends systems[J]. Analytical Biochemistry,2010,397(2):227-232.
[27]Dallmeier K,Neyts J. Simple and inexpensive three-step rapid amplification of cDNA 5′ ends using 5′ phosphorylated primers[J]. Analytical Biochemistry,2013,434(1):1-3.
[28]Metzker,L M. Sequencing technologies-the next generation[J]. Nature Reviews Genetics,2010,11(1):31-46.
[29]Cheng L,Quek C Y,Sun Xin,et al. The detection of microRNA associated with Alzheimers disease in biological fluids using next-generation sequencing technologies[J]. Frontiers in Genetics,2013,4(1):150.
[30]Boyd A C,Charles I G,Keyte J W,et al. Isolation and computer-aided characterization of MmeI,a type Ⅱ restriction endonuclease from Methylophilus methylotrophus[J]. Nucleic Acids Research,1986,14(13):5255-5274.
[31]Malone C,Brennecke J,Czech B,et al. Preparation of small RNA libraries for high-throughput sequencing[J]. Cold Spring Harbor Protocols,2012(10):1067-1077.
[32]Christodoulou D C,Gorham J M,Herman D S,et al. Construction of normalized RNA-seq libraries for next-generation sequencing using the crab duplex-specific nuclease[M]. New York:John Wiley & Sons Inc,2011:12-16.
[33]German M A,Pillay M,Jeong D H,et al. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends[J]. Nature Biotechnology,2008,26(8):941-946.
[34]German M A,Luo S J,Schroth G,et al. Construction of parallel analysis of RNA ends(PARE) libraries for the study of cleaved miRNA targets and the RNA degradome[J]. Nature Protocols,2009,4(3):356-362.
[35]Zhuang F L,Fuchs R T,Sun Z Y,et al. Structural bias in T4 RNA ligase-mediated 3′-adapter ligation[J]. Nucleic Acids Research,2012,40(7):e54.
[36]Langmead B,Trapnell C,Pop M,et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome[J]. Genome Biology,2009,10(3):R25.
[37]Li R Q,Yu C,Li Y R,et al. SOAP2:an improved ultrafast tool for short read alignment[J]. Bioinformatics,2009,25(15):1966-1967.
[38]Li Heng,Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics,2009,25(14):1754-1760.
[39]Bagijn M P,Goldstein L D,Sapetschnig A,et al. Function,targets,and evolution of Caenorhabditis elegans piRNAs[J]. Science,2012,337(694):574-578.
[40]Vaucheret H. MicroRNA-dependent trans-acting siRNA production[J]. Sciences STKE,2005(30):pe43.
[41]Hammell M,Long D,Zhang L,et al. MirWIP:microRNA target prediction based on microRNA-containing ribonucleoprotein-enriched transcripts[J]. Nature Methods,2008,5(9):813-819.
[42]Betel D,Koppal A,Agius P,et al. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites[J]. Genome Biology,2010,11(8):R90.
[43]Bu D C,Yu K T,Sun S L,et al. Noncode v3.0:integrative annotation of long noncoding RNAs[J]. Nucleic Acids Research,2012,40:D210-D215.
[44]Deana A C,Belasco J G. The bacterial enzyme RppH triggers messenger RNA degradation by 5′ pyrophosphate removal[J]. Nature,2008,451(7176):355-358.

相似文献/References:

[1]陶波,刘洋,李向勇,等.大豆中不同除草剂作用靶标酶的miRNA前体克隆[J].江苏农业科学,2016,44(09):24.
 Tao Bo,et al.Cloning of miRNA precursors for different herbicides in soybean[J].Jiangsu Agricultural Sciences,2016,44(07):24.
[2]钱荷英,李刚,何庆玲,等.蓖麻蚕核型多角体病毒的miRNAs生物信息学预测[J].江苏农业科学,2016,44(10):53.
 Qian Heying,et al.Bioinformatics prediction of miRNAs in PhcyNPV[J].Jiangsu Agricultural Sciences,2016,44(07):53.
[3]吴俊静,乔木,武华玉,等.调控CD163基因表达的miRNA鉴定及其在PRRSV感染中的作用分析[J].江苏农业科学,2017,45(13):16.
 Wu Junjing,et al.MiRNA identification of CD163 gene expression and its role in PRRSV infection[J].Jiangsu Agricultural Sciences,2017,45(07):16.
[4]蔡锦顺,关立增,娄鞍钢,等.猪乳外胞体总miRNAUnit对猪繁殖与呼吸综合征病毒复制抑制的研究[J].江苏农业科学,2018,46(05):144.
 Cai Jinshun,et al.Study on total miRNA in porcine milk exosome inhibiting porcine reproductive and respiratory syndrome virus replication[J].Jiangsu Agricultural Sciences,2018,46(07):144.
[5]马龙,徐薇,窦玲玲,等.水稻花粉育性相关基因研究进展[J].江苏农业科学,2019,47(10):42.
 Ma Long,et al.Research progress on pollen fertility-related genes in rice (Oryza sativa L.)[J].Jiangsu Agricultural Sciences,2019,47(07):42.
[6]刘天怡,金朝霞.MicroRNA在植物药用天然活性物质代谢途径中的调控作用[J].江苏农业科学,2019,47(16):34.
 Liu Tianyi,et al.Role of MicroRNA in regulation of plant natural medicinal substances metabolism[J].Jiangsu Agricultural Sciences,2019,47(07):34.
[7]李昕晏,崔杰,李俊良,等.miRNA调控植物抗逆机制的研究现状[J].江苏农业科学,2019,47(21):63.
 Li Xinyan,et al.Research status of miRNA regulating plant stress resistance mechanism[J].Jiangsu Agricultural Sciences,2019,47(07):63.
[8]曹访,刘莉,采克俊,等.五月龄翘嘴红鲌性腺组织小RNA转录谱的分析比较[J].江苏农业科学,2020,48(2):77.
 Cao Fang,et al.Analysis and comparison of miRNA transcription spectra of 5-month-old Erythroculter ilishaeformis gonad tissue[J].Jiangsu Agricultural Sciences,2020,48(07):77.

备注/Memo

备注/Memo:
收稿日期:2013-10-26
作者简介:崔东亚(1978—),男,河北满城人,硕士,讲师,主要从事分子生物教学与研究。E-mail:dongyacui@163.com。
更新日期/Last Update: 2014-07-25