|本期目录/Table of Contents|

[1]杨程,刘秋香.活性碳源对蔬菜地土壤硝态氮及氮氧化物气体的影响[J].江苏农业科学,2016,44(02):378-381.
 Yang Cheng,et al.Effects of active organic carbon on nitrate nitrogen and nitrogenous gases emissions in greenhouse vegetable soil[J].Jiangsu Agricultural Sciences,2016,44(02):378-381.
点击复制

活性碳源对蔬菜地土壤硝态氮及氮氧化物气体的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第44卷
期数:
2016年02期
页码:
378-381
栏目:
资源与环境
出版日期:
2016-02-25

文章信息/Info

Title:
Effects of active organic carbon on nitrate nitrogen and nitrogenous gases emissions in greenhouse vegetable soil
作者:
杨程 刘秋香
江苏省地质调查研究院,江苏南京 210018
Author(s):
Yang Chenget al
关键词:
设施蔬菜土壤硝态氮葡萄糖NON2O活性碳源
Keywords:
-
分类号:
S153
DOI:
-
文献标志码:
A
摘要:
室内25 ℃条件下,于存在硝态氮累积、50%田间持水量的设施蔬菜地土壤中,分别添加含碳(C)量为0、0.5、1.0、1.5 g/kg的活性碳源葡萄糖,分别标记为C0、C1、C2、C3,研究活性碳用量对土壤硝态氮及其氮氧化物气体NO、N2O(含量均以氮计)的影响。结果表明,培养16 d,C0处理土壤铵态氮、硝态氮含量相对稳定,C1、C2、C3处理的土壤硝态氮含量均由初始870 mg/kg降至10 mg/kg以下,且葡萄糖用量越高,硝态氮下降越快;培养16 d后,C1、C2、C3处理的土壤铵态氮由初始30.8 mg/kg分别提高到302.0、33.9、62.5 mg/kg;葡萄糖添加显著提高土壤NO、N2O的排放,C0处理土壤NO、N2O的累积产生量分别为3.80、0.04 mg/kg,C1、C2、C3处理NO、N2O的累积产生量则分别达到 4.0~11.7、3.3~62.4 mg/kg。添加活性碳源能有效降低设施蔬菜地土壤积累的硝态氮,但也应充分重视NO、N2O的排放。
Abstract:
-

参考文献/References:

[1]Ju X T,Kou C L,Zhang F S,et al. Nitrogen balance and groundwater nitrate contamination:comparison among three intensive cropping systems on the north China plain[J]. Environmental Pollution,2006,143(1):117-125.
[2]Xiong Z Q,Xie Y X,Xing G X,et al. Measurements of nitrous oxide emissions from vegetable production in China[J]. Atmospheric Environment,2006,40(12):2225-2234.
[3]Shi W M,Yao J,Yan F. Vegetable plantation under greenhouse conditions leads to rapid accumulation of nutrients,acidification and salinity of soils and groundwater contamination in South-Eastern China[J]. Nutrient Cycling in Agroecosystems,2009,83(1):73-84.
[4]He F F,Jiang R F,Chen Q,et al. Nitrous oxide emissions from an intensively managed greenhouse vegetable cropping system in northern China[J]. Environmental Pollution,2009,157(5):1666-1672.
[5]Shi W,Norton J M. Microbial control of nitrate concentrations in an agricultural soil treated with dairy waste compost or ammonium fertilizer[J]. Soil Biology and Biochemistry,2000,32(10):1453-1457.
[6]Miller M N,Zebarth B J,Dandie C E,et al. Crop residue influence on denitrification,N2O emissions and denitrifier community abundance in soil[J]. Soil Biology and Biochemistry,2008,40(10):2553-2562.
[7]Wan Y J,Ju X T,Ingwersen J,et al. Gross nitrogen transformations and related nitrous oxide emissions in an intensively used calcareous soil[J]. Soil Science Society of America Journal,2009,73(1):102-112.
[8]Tiedje J M,Sexstone A J,Myrold D D,et al. Denitrification:ecological niches,competition and survival[J]. Antonie Van Leeuwenhoek,1982,48(6):569-583.
[9]Weier K L,Doran J W,Power J F,et al. Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water,available carbon,and nitrate[J]. Soil Science Society of American Journal,1993,57:66-72.
[10]张乃明,李刚,苏友波,等. 滇池流域大棚土壤硝酸盐累积特征及其对环境的影响[J]. 农业工程学报,2006,22(6):215-217.
[11]Baggs E M,Rees R M,Smith K A,et al. Nitrous oxide emission from soils after incorporating crop residues[J]. Soil Use and Management,2000,16(2):82-87.
[12]Kaewpradit W,Toomsan B,Vityakon P,et al. Regulating mineral N release by mixing groundnut residues and rice straw under field conditions[J]. European Journal of Soil Science,2008,59(4):640-652.
[13]Recous S,Mary B,Faurie G. Microbial immobilization of ammonium and nitrate in cultivated soils[J]. Soil Biology and Biochemistry,1990,22(7):913-922.
[14]Christie P,Wasson E A. Short-term immobilization of ammonium and nitrate added to a grassland soil[J]. Soil Biology and Biochemistry,2001,33(9):1277-1278.
[15]Browning D F,Grainger D C,Beatty C M,et al. Integration of three signals at the Escherichia coli nrf promoter:a role for Fis protein in catabolite repression[J]. Molecular Microbiology,2005,57(2):496-510.
[16]Burgin A J,Hamilton S K. Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways[J]. Frontiers in Ecology and the Environment,2007,5(2):89-96.
[17]Freney J R. Emission of nitrous oxide from soils used for agriculture[J]. Nutrient Cycling in Agroecosystems,1997,49(1/2/3):1-6.
[18]Bollmann A,Conrad R. Influence of O2 availability on NO and N2O release by nitrification and denitrification in soils[J]. Global Change Biology,1998,4(4):387-396.
[19]朱同彬,张金波,蔡祖聪. 淹水条件下添加有机物料对蔬菜地土壤硝态氮及氮素气体排放的影响[J]. 应用生态学报,2012,23(1):109-114.
[20]Wolf I,Russow R. Different pathways of formation of N2O,N2 and NO in black earth soil[J]. Soil Biology and Biochemistry,2000,32(2):229-239.
[21]Blackmer A M,Bremner J M. Inhibitory effect of nitrate on reduction of N2O to N2 by soil microorganisms[J]. Soil Biology and Biochemistry,1978,10(3):187-191.
[22]Ryden J C. Denitrification loss from a grassland soil in the field receiving different rates of nitrogen as ammonium nitrate[J]. Journal of Soil Science,1983,34(2):355-365.
[23]Hayakawa A,Akiyama H,Sudo S,et al. N2O and NO emissions from an Andisol field as influenced by pelleted poultry manure[J]. Soil Biology & Biochemistry,2009,41(3):521-529.
[24]Bauhus J,Meyer A C,Brumme R. Effect of the inhibitors nitrapyrin and sodium chlorate on nitrification and N2O formation in an acid forest soil[J]. Biology and Fertility of Soils,1996,22(4):318-325.
[25]Beauchamp E G,Trevors J T,Paul J W. Carbon sources for bacterial denitrification[J]. Advances in Soil Science,1989,10:113-142.
[26]Williams E J,Hutchinson G L,Fehsenfeld F C. NOx and N2O emissions from soil[J]. Global Biogeochemical Cycles,1992,6(4):351-388.
[27]Rudolph J,Koschorreck M,Conrad R. Oxidative and reductive microbial consumption of nitric oxide in a heathland soil[J]. Soil Biology and Biochemistry,1996,28(10/11):1389-1396.
[28]Bouwman A F. Soils and greenhouse effect[M]. New York:Willey,1990:61-127.

相似文献/References:

[1]蒋宝南,刘腾飞,单建明,等.QuEChERS-GC/μECD法测定土壤中的毒死蜱残留量[J].江苏农业科学,2014,42(12):332.
 Jiang Baonan,et al.Determination of chlorpyrifos residues in soil by QuEChERS-GC/μECD[J].Jiangsu Agricultural Sciences,2014,42(02):332.
[2]李国锋,魏瑞成,王冉.高效液相色谱法测定土壤中联苯与间羟基苯甲酸残留[J].江苏农业科学,2014,42(12):316.
 Li Guofeng,et al.Determination of biphenyl and M-hydroxy benzoic acid residues in soil by high performance liquid chromatography[J].Jiangsu Agricultural Sciences,2014,42(02):316.
[3]史景允,于伟红,梁秋生.蓖麻对镉污染土壤的修复潜力[J].江苏农业科学,2014,42(11):386.
 Shi Jingyun,et al(8).Potential repairing of cadmium contaminated soil by castor oil plant[J].Jiangsu Agricultural Sciences,2014,42(02):386.
[4]何继山,梁杏,李静.土样浸提液电导率与盐分关系的逐步回归分析[J].江苏农业科学,2014,42(10):314.
 He Jishan,et al.Regression analysis of relationship between soil samples leaching solution conductivity and solinity[J].Jiangsu Agricultural Sciences,2014,42(02):314.
[5]徐洪文,卢妍.土壤碳矿化及活性有机碳影响因子研究进展[J].江苏农业科学,2014,42(10):4.
 Xu Hongwen,et al.Research progress on soil carbon mineralization and factors affecting active organic carbon[J].Jiangsu Agricultural Sciences,2014,42(02):4.
[6]李范,李娜,陈建中,等.基于磷脂脂肪酸提取方法的微生物群落结构研究[J].江苏农业科学,2014,42(09):323.
 Li Fan,et al.Study on microbial community structure based on phospholipid fatty acid extraction method[J].Jiangsu Agricultural Sciences,2014,42(02):323.
[7]尹辉,李晖,蒋忠诚,等.典型岩溶区土壤水分的空间异质性研究[J].江苏农业科学,2013,41(07):332.
 Yin Hui,et al.Study on spatial variability of soil water content in typical karst area[J].Jiangsu Agricultural Sciences,2013,41(02):332.
[8]覃怀德,吴炳孙,吴敏,等.橡胶园土壤钾素空间变异与分区管理技术——以海南省琼中县为例[J].江苏农业科学,2013,41(08):326.
 Qin Huaide,et al.Spatial variability and regionalized management of soil potassium nutrient in rubber plantation—Taking Qiongzhong County of Hainan Province as an example[J].Jiangsu Agricultural Sciences,2013,41(02):326.
[9]符勇,周忠发,王昆,等.基于贵州喀斯特高原山区的烟草种植适宜性研究[J].江苏农业科学,2014,42(09):92.
 Fu Yong,et al.Study on planting suitability of tobacco based on Guizhou karst mountain plateau[J].Jiangsu Agricultural Sciences,2014,42(02):92.
[10]李文凤,房翠翠,霍英芝.不同植被类型、海拔高度土壤芽孢杆菌的空间分布特征[J].江苏农业科学,2014,42(08):370.
 Li Wenfeng,et al.Spatial distribution of soil bacillus of different vegetation types and altitudes[J].Jiangsu Agricultural Sciences,2014,42(02):370.
[11]张乐森,刘悦上,马金芝,等.山东省滨州市设施蔬菜土壤退化防治与修复对策[J].江苏农业科学,2013,41(07):141.
 Zhang Lesen,et al.Control and restoration strategies of facility vegetable soil degradation in Binzhou of Shandong Province[J].Jiangsu Agricultural Sciences,2013,41(02):141.
[12]段宏凯,高利娟,刘东生,等.长期连作下不同栽培措施对设施蔬菜土壤理化性状的影响[J].江苏农业科学,2018,46(13):276.
 Duan Hongkai,et al.Effects of different cultivation measures on soil physical and chemical properties of greenhouse vegetable under long-term continuous cropping[J].Jiangsu Agricultural Sciences,2018,46(02):276.
[13]曾子凡,马艳,罗佳,等.长期施肥对设施蔬菜土壤理化及生物学性状的影响研究进展[J].江苏农业科学,2023,51(6):9.
 Zeng Zifan,et al.Research progress on effects of long-term fertilization on soil physicochemical and biological properties in greenhouse vegetables[J].Jiangsu Agricultural Sciences,2023,51(02):9.

备注/Memo

备注/Memo:
收稿日期:2015-02-12
基金项目:江苏省科技支撑计划(编号:BE2014722)。
作者简介:杨程(1983—),男,江苏淮安人,硕士,工程师,从事土壤污染分析研究。Tel:(025)51816320;E-mail:yc384522@163.com。
更新日期/Last Update: 2016-02-25