|本期目录/Table of Contents|

[1]逯颖,王涛,田阳.秦岭山地森林植被变化及对气候响应的地形影响[J].江苏农业科学,2018,46(1):214-218.
 Lu Ying,et al.Topographical effect of vegetation change and its response to climate change in Qinling Mountains[J].Jiangsu Agricultural Sciences,2018,46(1):214-218.
点击复制

秦岭山地森林植被变化及对气候响应的地形影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第46卷
期数:
2018年第1期
页码:
214-218
栏目:
资源与环境
出版日期:
2018-01-05

文章信息/Info

Title:
Topographical effect of vegetation change and its response to climate change in Qinling Mountains
作者:
逯颖12 王涛23 田阳4
1.中国矿业大学(北京)地球科学与测绘工程学院,北京 100083; 2.西安科技大学测绘科学与技术学院,陕西西安 710054;
3.西北大学城市与环境学院,陕西西安 710127; 4.重庆市綦江区横山镇人民政府,重庆 401460
Author(s):
Lu Yinget al
关键词:
MODIS NDVI线性趋势相关系数坡向坡度秦岭山地
Keywords:
-
分类号:
S718.5
DOI:
-
文献标志码:
A
摘要:
地形是影响森林植被分布与生长的重要地理因子,秦岭山地作为中国中部重要生态屏障区,其森林植被变化及对气候变化响应研究受到广泛关注。基于2000—2014年秦岭山地MODIS NDVI、DEM、气温和降水数据,利用线性趋势法和相关系数对森林植被变化及对气候响应的坡向、坡度影响进行了分析,研究结果:(1)秦岭山地森林植被以落叶阔叶林为主,占森林总面积的59.72%。按坡向划分,森林植被主要分布在半阳坡上,约占50%;按坡度划分,森林植被主要集中在斜坡和陡坡上,共占50%以上。(2)2000—2014年秦岭山地各森林植被NDVI均呈线性增加过程,在坡向和坡度上均表现为落叶阔叶灌木林线性增加速率最高、落叶阔叶林次之、常绿针叶林最低的特征,并且落叶阔叶灌木林、落叶阔叶林、常绿阔叶林的主体部分均呈显著的线性增加趋势,而针阔混交林、常绿针叶林的增加过程不显著。(3)秦岭山地森林植被与气温在不同坡向和坡度上均呈负相关关系,而与降水呈正相关关系,反映该区域热量条件充足,降水成为森林植被生长的主要限制因子。同时,在不同一坡向上,随着坡度的增加,气温、降水与森林植被的相关关系变化趋势较为一致。研究结果表明,秦岭山地地形条件对森林植被分布影响较大,而不同地形上水热条件对植被生长发育影响较小。
Abstract:
-

参考文献/References:

[1]Walther G R,Post E,Convey P,et al. Ecological responses to recent climate change[J]. Nature,2002,416(6879):389-395.
[2]Gao X J,Shi Y,Zhang D F,et al. Climate change in China in the 21st century as simulated by a high resolution regional climate model[J]. Chinese Science Bulletin,2012,57(10):1188-1195.
[3]Stoker T F,Qin G K,Plattner M,et al. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change[C]//IPCC Climate Change 2013. The Physical Science Basis.Cambridge:Cambridge University Press,2013.
[4]Gartzia M,Cabello F P,Bueno C G,et al. Physiognomic and physiologic changes in mountain grassland in response to environmental and anthropogenic factors[J]. Applied Geography,2016,66:1-11.
[5]Jacqueline G F,Antoine G,Niklaus E Z. Tree line shifts in the Swiss Alps:climate change or land abandonment[J]. Journal of Vegetation Science,2007,18(4):571-582.
[6]白红英. 秦巴山区森林植被对环境变化的响应[M]. 北京:科学出版社,2014.
[7]Zhao X,Ma C H,Xiao L. The vegetation history of Qinling Mountains,China[J]. Quaternary International,2014,325(6):55-62.
[8]Liu X F,Zhu X F,Pan Y Z,et al. Vegetation dynamics in Qinling-Daba Mountains in relation to climate factors between 2000 and 2014[J]. Journal of Geographical Sciences,2016,26(1):45-58.
[9]李双双,延军平,万佳. 全球气候变化下秦岭南北气温变化特征[J]. 地理科学,2012,32(7):853-858.
[10]Jiang C,Mu X M,Wang F,et al. Analysis of extreme temperature events in the Qinling Mountains and surrounding area during 1960—2012[J]. Quaternary International,2016,392(21):155-167.
[11]高翔,白红英,张善红,等. 1959—2009年秦岭山地气候变化趋势研究[J]. 水土保持通报,2012,32(1):207-211.
[12]Pekin B K. Anthropogenic and topographic correlates of natural vegetation cover within agricultural landscape mosaics in Turkey[J]. Land Use Policy,2016,54:313-320.
[13]Wessels K J,Prince S D,Malherbe J,et al. Can human-induced land degradation be distinguished from the effects of rainfall variability? a case study in South Africa[J]. Journal of Arid Environments,2007,68(2):271-297.
[14]Zhan Z Z,Liu H B,Li H M,et al. The relationship between NDVI and terrain factors—a case study of Chongqing[J]. Procedia Environmental Science,2012,12:765-771.
[15]崔晓临,白红英,王涛. 秦岭地区植被NDVI海拔梯度差异及其气温响应[J]. 资源科学,2013,35(3):618-626.
[16]Zhou D C,Zhao S Q,Zhang L X,et al. Remotely sensed assessment of urbanization effects on vegetation phenology in Chinas 32 major cities[J]. Remote Sensing of Environment,2016,176:272-281.
[17]Liu S L,Deng L,Zhao Q H,et al. Effects of road network on vegetation pattern in Xishuangbanna,Yunnan Province,Southwest China[J]. Transportation Research Part D-Transport and Environment,2011,16(8):591-594.
[18]Stefanov W L,Netzband M. Assessment of ASTER land cover and MODIS NDVI data at multiple scales for ecological characterization of an and urban center[J]. Remote Sensing of Environment,2005,99(1/2):31-43.
[19]Florinsky I V,Kuryakova G A. Influence of topography on some vegetation cover properties[J]. Catena,1996,27(2):123-141.
[20]Xu X L,Ma K M,Fu B J,et al. Relationships between vegetation and soil and topography in a dry warm river valley,SW China[J]. Catena,2008,75(2):138-145.
[21]王涛,陶辉,雷刚,等. 博斯腾湖流域植被覆盖变化及驱动因素分析[J]. 中国农学通报,2015,31(4):228-236.
[22]徐建华. 现代地理学中的数学方法[M]. 北京:高等教育出版社,1996:37-70.

相似文献/References:

[1]杨琳,高苹,居为民.基于MODIS NDVI数据的江苏省冬小麦物候期提取[J].江苏农业科学,2016,44(01):315.
 Yang Lin,et al.Retrieval of winter wheat phenological period based on MODIS NDVI data in Jiangsu Province[J].Jiangsu Agricultural Sciences,2016,44(1):315.
[2]郭力宇,郭昭,王涛,等.陕西渭河流域近15年土壤侵蚀时空变化分析[J].江苏农业科学,2018,46(02):185.
 Guo Liyu,et al.Spatio-temporal variation of soil erosion in Weihe River Basin of Shaanxi Province in the past 15 years[J].Jiangsu Agricultural Sciences,2018,46(1):185.
[3]史晓亮,陈冲,尚雨,等.淮河流域植被净初级生产力与干旱的相关性分析[J].江苏农业科学,2020,48(03):255.
 Shi Xiaoliang,et al.Analysis of correlation between vegetation net primary productivity and drought in Huai River Basin[J].Jiangsu Agricultural Sciences,2020,48(1):255.
[4]余汛,王莉,景海涛,等.太行山区NDVI时空变化及其对气候因子的响应[J].江苏农业科学,2020,48(16):260.
 Yu Xun,et al.Temporal and spatial variation of NDVI and its response to climatic factors in Taihang Mountains[J].Jiangsu Agricultural Sciences,2020,48(1):260.
[5]刘剑锋,方鹏,陈琳,等.基于MODIS NDVI的冬小麦收获指数遥感提取[J].江苏农业科学,2022,50(13):219.
 Liu Jianfeng,et al.Remote sensing extraction of winter wheat harvest index based on MODIS NDVI[J].Jiangsu Agricultural Sciences,2022,50(1):219.

备注/Memo

备注/Memo:
收稿日期:2017-04-20
基金项目:国家林业公益性行业科研专项(编号:201304309);黄土高原土壤侵蚀与旱地农业国家重点实验室开放基金(编号:A314021402-1616)。
作者简介:逯颖(1994—),女,山西寿阳人,硕士研究生,主要从事林业遥感研究。E-mail:luying82500@163.com。
通信作者:王涛,博士,讲师,主要从事区域环境变化研究。E-mail:wht432@163.com。
更新日期/Last Update: 2018-01-05