|本期目录/Table of Contents|

[1]张二豪,张杰.CRISPR/Cas9基因编辑技术应用于绿僵菌[J].江苏农业科学,2021,49(11):48-53.
 Zhang Erhao,et al.CRISPR/Cas9-mediated genome editing in Metarhizium acridum[J].Jiangsu Agricultural Sciences,2021,49(11):48-53.
点击复制

CRISPR/Cas9基因编辑技术应用于绿僵菌(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第49卷
期数:
2021年第11期
页码:
48-53
栏目:
生物技术
出版日期:
2021-06-05

文章信息/Info

Title:
CRISPR/Cas9-mediated genome editing in Metarhizium acridum
作者:
张二豪1张杰2
1.西藏农牧学院食品科学学院,西藏林芝 860000; 2.周口师范学院生命科学与农学学院,河南周口 466001
Author(s):
Zhang Erhaoet al
关键词:
CRISPR/Cas9重组酶基因编辑绿僵菌
Keywords:
-
分类号:
S188
DOI:
-
文献标志码:
A
摘要:
近年来的研究显示,CRISPR/Cas9系统是强有力的基因编辑新技术。以蝗绿僵菌为试验对象,以同源重组敲除系统为对照,研究CRISPR/Cas9系统敲除蝗绿僵菌的基因isp4核苷酸序列。阐明了CRISPR/Cas9载体构建的方法,比较了CRISPR/Cas9和Recombinase敲除技术的异同,最后通过PCR和突变菌株的表型验证了CRISPR/Cas9系统能够应用于绿僵菌。结果表明,CRISPR/Cas9在昆虫病原真菌绿僵菌中是有效的基因编辑技术。
Abstract:
-

参考文献/References:

[1]Blasco R B,Karaca E,Ambrogio C,et al. Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology[J]. Cell Reports,2014,9(4):1219-1227.
[2]Canver M C,Bauer D E,Dass A,et al. Characterization of genomic deletion efficiency mediated by clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells[J]. Journal of Biological Chemistry,2014,289(31):21312-21324.
[3]Cho S W,Kim S,Kim J M,et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease[J]. Nat Biotechnol,2013,31(3):230-232.
[4]Choi P S,Meyerson M. Targeted genomic rearrangements using CRISPR/Cas technology[J]. Nature Communications,2014,5 (1):1-9.
[5]Cong L,Ran F A,Cox D,et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science,2013,339(6121):819-823.
[6]Deltcheva E,Chylinski K,Sharma C M,et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase Ⅲ[J]. Nature,2011,471(7340):602-607.
[7]Doench J G,Hartenian E,Graham D B,et al. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation[J]. Nature Biotechnology,2014,32(12):1262-1267.
[8]Doudna J A,Charpentier E. The new frontier of genome engineering with CRISPR-Cas9[J]. Science,2014,28(346):6123-6128.
[9]Esvelt K M,Mali P,Braff J L,et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing[J]. Nature Methods,2013,10(11):1116-1121.
[10]Frock R L,Hu J,Meyers R M,et al. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases[J]. Nat Biotechnol,2015,33(2):179-186.
[11]Fu Y,Sander J D,Reyon D,et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs[J]. Nat Biotechnol,2014,32(3):279-284.
[12]Fujii W,Kakuta S,Yoshioka S,et al. Zygote-mediated generation of genome-modified mice using Streptococcus thermophilus 1-derived CRISPR/Cas system[J]. Biochem Biophys Res Commun,2016,477(3):473-476.
[13]Generoso W C,Gottardi M,Oreb M,et al. Simplified CRISPR-Cas genome editing for Saccharomyces cerevisiae[J]. Journal of Microbiological Methods,2016,127:203-205.
[14]Hong M,Peng G,Keyhani N O,et al. Application of the entomogenous fungus,Metarhizium anisopliae,for leafroller (Cnaphalocrocis medinalis) control and its effect on rice phyllosphere microbial diversity[J]. Applied Microbiology and Biotechnology,2017,101(2):6793-6807.
[15]Horvath P,Barrangou R. CRISPR/Cas,the immune system of bacteria and archaea[J]. Science,2010,327(5962):167-170.
[16]Hwang W Y,Fu Y,Reyon D,et al. Efficient genome editing in zebrafish using a CRISPR-Cas system[J]. Nature Biotechnology,2013,31(3):227-229.
[17]Hynes A P,Lemay M L,Moineau S . Applications of CRISPR-Cas in its natural habitat[J]. Current Opinion in Chemical Biology,2016,34:30-36.
[18]Ishino Y,Shinagawa H,Makino K,et al. Nucleotide sequence of the iap gene,responsible for alkaline phosphatase isozyme conversion in Escherichia coli,and identification of the gene product[J]. J Bacteriol,1987,169(12):5429-5433.
[19]Kieler J B,Duong K L,Moye-Rowley W S,et al. Targeted gene deletion in Aspergillus fumigatus using microbial machinery and a recyclable marker[J]. J Microbiol Methods,2013,95(3):373-378.
[20]Kundaje A,Kyriazopoulou-Panagiotopoulou S,Libbrecht M,et al. Ubiquitous heterogeneity and asymmetry of the chromatin environment at regulatory elements[J]. Genome Research,2012,22(9):1735-1747.
[21]Kuscu C,Arslan S,Singh R,et al. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease[J]. Nat Biotechnol,2014,32:677-683.
[22]Lin Y,Cradick T J,Brown M T,et al. CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences[J]. Nucleic Acids Research,2014,42(11):7473-7485.
[23]Luo S,He M,CaoY,et al. The tetraspanin gene MaPls1 contributes to virulence by affecting germination,appressorial function and enzymes for cuticle degradation in the entomopathogenic fungus,Metarhizium acridum[J]. Environ Microbiol,2013,15(11):2966-2979.
[24]Szewczyk E,Kasuga T,Fan Z . Efficient sequential repetitive gene deletions in Neurospora crassa employing a self-excising β-recombinase/six cassette[J]. Journal of Microbiological Methods,2013,92(3):236-243.
[25]Szewczyk E,Kasuga T,Fan Z . A new variant of self-excising β-recombinase/six cassette for repetitive gene deletion and homokaryon purification in Neurospora crassa[J]. Journal of Microbiological Methods,2014,100:17-23.
[26]Tsai S Q,Wyvekens N,Khayter C,et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing[J]. Nat Biotechnol,2014,32(6):569-576.
[27]Tulloch M. The genus Metarhizium[J]. Trans Br Mycol Soc,1976,66(3):407-411.
[28]Wan H,Feng C,Teng F,et al. One-step generation of p53 gene biallelic mutant Cynomolgus monkey via the CRISPR/Cas system[J]. Cell Research,2015,25(2):258-261.
[29]Wang H,Yang H,Shivalila CS,et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering[J]. Cell,2013,153(4):910-918.
[30]Wang J,Zhuang J,Iyer S,et al. Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors[J]. Genome Res,2012,22(9):1798-1812.
[31]Weninger A,Hatzl A M,Schmid C,et al. Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris[J]. Journal of Biotechnology,2016,235:139-149.

相似文献/References:

[1]尤双,曹洋,李村院,等.靶向兔肌肉生长抑制素基因CRISPR/Cas9载体的构建和活性分析[J].江苏农业科学,2018,46(06):34.
 You Shuang,et al.Construction and activity analysis of targeted CRISPR/Cas9 MSTN gene vector[J].Jiangsu Agricultural Sciences,2018,46(11):34.
[2]李莉梅,欧阳乐军,尹爱国,等.1种大片段敲除巨桉细胞分裂素氧化酶基因的CRISPR载体构建[J].江苏农业科学,2018,46(12):19.
 Li Limei,et al.Construction of eucalyptus genome editing vector by using CRISPR/Cas9 system and knockout Klenow fragment of cytokinin oxidase/dehydrogenase gene[J].Jiangsu Agricultural Sciences,2018,46(11):19.
[3]沈明晨,薛超,乔中英,等.CRISPR/Cas9系统在水稻中的发展和利用[J].江苏农业科学,2019,47(10):5.
 Shen Mingcheng,et al.Development and utilization of CRISPR/Cas9 system in rice[J].Jiangsu Agricultural Sciences,2019,47(11):5.
[4]马斯霜,白海波,惠建,等.CRISPR/Cas9技术及其在水稻和小麦遗传改良中的应用综述[J].江苏农业科学,2019,47(20):29.
 Ma Sishuang,et al.Application of CRISPR/Cas9 technology in rice and wheat genetic improvement:a review[J].Jiangsu Agricultural Sciences,2019,47(11):29.
[5]曹兴林,恽君雯,陈丽,等.基于CRISPR/Cas9系统的MDCK细胞IFN-β1编码序列的敲除[J].江苏农业科学,2020,48(07):59.
 Cao Xinglin,et al.Knockout of IFN-β1 in MDCK cells based on CRISPR/Cas9 system[J].Jiangsu Agricultural Sciences,2020,48(11):59.
[6]李星坤,潘慧,李攀,等.基于CRISPR/Cas9系统的拟南芥ugt84a1/ugt84a2双突变体制作及突变位点分析[J].江苏农业科学,2020,48(20):49.
 Li Xingkun,et al.Construction of Arabidopsis ugt84a1/ugt84a2 double mutant and analysis of mutation site based on CRISPR/Cas9 system[J].Jiangsu Agricultural Sciences,2020,48(11):49.
[7]夏雄飞,潘俊良,韩长志.CRISPR/Cas9基因编辑技术在植物病原真菌中的应用研究进展[J].江苏农业科学,2022,50(12):22.
 Xia Xiongfei,et al.Research progress on application of CRISPR/Cas9 gene editing technology in plant pathogenic fungi[J].Jiangsu Agricultural Sciences,2022,50(11):22.
[8]闫强,胡亚群,薛冬,等.基于绿豆发状根的快速CRISPR/Cas9基因编辑方法[J].江苏农业科学,2023,51(10):48.
 Yan Qiang,et al.Rapid CRISPR/Cas9 gene editing method based on hairy roots of mung bean[J].Jiangsu Agricultural Sciences,2023,51(11):48.
[9]朱宗财,王志军,高能,等.CRISPR/Cas9基因编辑技术在植物抗病性改良中的应用综述[J].江苏农业科学,2024,52(3):1.
 Zhu Zongcai,et al.Application of CRISPR/Cas9 gene editing technology in improvement of plant disease resistance:a review[J].Jiangsu Agricultural Sciences,2024,52(11):1.
[10]颜静宛,陈子强,周淑芬,等.利用CRISPR/Cas9系统创制水稻品种GW2基因的突变体[J].江苏农业科学,2024,52(3):73.
 Yan Jingwan,et al.Creation of mutants of GW2 gene in rice varieties using CRISPR/Cas9 system[J].Jiangsu Agricultural Sciences,2024,52(11):73.

备注/Memo

备注/Memo:
收稿日期:2020-10-09
基金项目:周口师范学院高层次人才科研启动经费研究项目(编号:2018B180061);西藏自治区自然科学基金 (编号:XZ2018ZRG-19)。
作者简介:张二豪(1989—),男,河南平顶山人,硕士,讲师,主要研究方向为分子生物学。E-mail:1158496424@qq.com。
通信作者:张杰,博士,讲师,主要研究方向为分子生物学与生物工程。E-mail:Zhangjiezk@qq.com。
更新日期/Last Update: 2021-06-05