|本期目录/Table of Contents|

[1]梁文化,陈涛,姚姝,等.基于高密度遗传图谱定位水稻籽粒长宽比QTL[J].江苏农业科学,2021,49(23):47-52.
 Liang Wenhua,et al.QTL mapping for grain length-width ratio based on high-density genetic map in rice[J].Jiangsu Agricultural Sciences,2021,49(23):47-52.
点击复制

基于高密度遗传图谱定位水稻籽粒长宽比QTL(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第49卷
期数:
2021年第23期
页码:
47-52
栏目:
生物技术
出版日期:
2021-12-05

文章信息/Info

Title:
QTL mapping for grain length-width ratio based on high-density genetic map in rice
作者:
梁文化 陈涛 姚姝 赵凌 朱镇 赵庆勇 周丽慧 赵春芳 路凯 赫磊 王才林 张亚东
江苏省农业科学院粮食作物研究所/国家水稻改良中心南京分中心/江苏省优质水稻工程技术研究中心,江苏南京 210014
Author(s):
Liang Wenhuaet al
关键词:
水稻重组自交系长宽比QTL定位高密度遗传图谱
Keywords:
-
分类号:
S511.03
DOI:
-
文献标志码:
A
摘要:
挖掘水稻籽粒长宽比相关的QTL可为水稻粒型的遗传机制研究提供理论基础。以特大粒水稻TD70和小粒籼稻Kasalath构建的重组自交系群体为研究材料,2019、2020年连续2年考察各株系的籽粒长宽比,利用群体重测序构建的高密度遗传图谱对控制水稻籽粒长宽比相关QTL进行分析。结果显示,在重组自交系群体中籽粒长宽比呈连续变异,有明显的超亲分离现象。2019、2020年2年共检测到11个QTLs,分别位于2、3、4、5、6、7、9号染色体上。QTL的LOD值介于3.74~31.41之间,单个QTL可解释2.48%~24.67%的表型变异,2年重复检测到的QTL位点共有4个。进一步分析发现,qLWR2-2、qLWR3-1、qLWR3-2、qLWR4、qLWR5、qLWR6-2及qLWR7共7个位点所在区间与前人的报道相同或相似。qLWR2-1、qLWR6-1、qLWR9-1和qLWR9-2可能是新发现的QTL位点。本研究结果可用于下一步QTL的克隆及分子标记辅助选择育种。
Abstract:
-

参考文献/References:

[1]徐正进,陈温福,马殿荣,等. 稻谷粒形与稻米主要品质性状的关系[J]. 作物学报,2004,30(9):894-900.
[2]高志强,占小登,梁永书,等. 水稻粒形性状的遗传及相关基因定位与克隆研究进展[J]. 遗传,2011,33(4):314-321.
[3]Harberd N P.Shaping taste:the molecular discovery of rice genes improving grain size,shape and quality[J]. Journal of Genetics and Genomics,2015,42(11):597-599.
[4]Li N,Xu R,Li Y H.Molecular networks of seed size control in plants[J]. Annual Review of Plant Biology,2019,70:435-463.
[5]Chan A N,Wang L L,Zhu Y J,et al. Identification through fine mapping and verification using CRISPR/Cas9-targeted mutagenesis for a minor QTL controlling grain weight in rice[J]. Theoretical and Applied Genetics,2021,134(1):327-337.
[6]Fan C C,Yu S B,Wang C R,et al. A causal C-A mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker[J]. Theoretical and Applied Genetics,2009,118(3):465-472.
[7]Zhang X J,Wang J F,Huang J,et al. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(52):21534-21539.
[8]Wang Y X,Xiong G S,Hu J A,et al. Copy number variation at the GL7 locus contributes to grain size diversity in rice[J]. Nature Genetics,2015,47(8):944-948.
[9]Wang S K,Li S,Liu Q A,et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]. Nature Genetics,2015,47(8):949-954.
[10]Wu W G,Liu X Y,Wang M H,et al. A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication[J]. Nature Plants,2017,3:17064.
[11]Xia D,Zhou H,Liu R J,et al. GL3.3,a novel QTL encoding a GSK3/SHAGGY-like kinase,epistatically interacts with GS3 to produce extra-long grains in rice[J]. Molecular Plant,2018,11(5):754-756.
[12]Ying J Z,Ma M,Bai C,et al. TGW3,a major QTL that negatively modulates grain length and weight in rice[J]. Molecular Plant,2018,11(5):750-753.
[13]Si L Z,Chen J Y,Huang X H,et al. OsSPL13 controls grain size in cultivated rice[J]. Nature Genetics,2016,48(4):447-456.
[14]Zhang Y P,Zhang Z Y,Sun X M,et al. Natural alleles of GLA for grain length and awn development were differently domesticated in rice subspecies Japonica and indica[J]. Plant Biotechnology Journal,2019,17(8):1547-1559.
[15]Zhao D S,Li Q F,Zhang C Q,et al. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality[J]. Nature Communications,2018,9:1240.
[16]Song X J,Huang W,Shi M,et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nature Genetics,2007,39(5):623-630.
[17]Duan P G,Xu J S,Zeng D L,et al. Natural variation in the promoter of GSE5 contributes to grain size diversity in rice[J]. Molecular Plant,2017,10(5):685-694.
[18]Liu J F,Chen J,Zheng X M,et al. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice[J]. Nature Plants,2017,3:17043.
[19]Shomura A,Izawa T,Ebana K,et al. Deletion in a gene associated with grain size increased yields during rice domestication[J]. Nature Genetics,2008,40(8):1023-1028.
[20]Li Y B,Fan C C,Xing Y Z,et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nature Genetics,2011,43(12):1266-1269.
[21]Wang S K,Wu K,Yuan Q B,et al. Control of grain size,shape and quality by OsSPL16 in rice[J]. Nature Genetics,2012,44(8):950-954.
[22]Ishimaru K,Hirotsu N,Madoka Y,et al. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield[J]. Nature Genetics,2013,45(6):707-711.
[23]Song X J,Kuroha T,Ayano M,et al. Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight,yield,and plant biomass in rice[J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(1):76-81.
[24]Segami S,Kono I,Ando T,et al. Small and round seed 5 gene encodes alpha-tubulin regulating seed cell elongation in rice[J]. Rice,2012,5(1):4.
[25]Hu J A,Wang Y X,Fang Y X,et al. A rare allele of GS2 enhances grain size and grain yield in rice[J]. Molecular Plant,2015,8(10):1455-1465.
[26]Che R H,Tong H N,Shi B H,et al. Control of grain size and rice yield by GL2-mediated brassinosteroid responses[J]. Nature Plants,2016,2:15195.
[27]张亚东,梁文化,赫磊,等. 水稻RIL群体高密度遗传图谱构建及粒型QTL定位[J/OL]. 中国农业科学.[2021-09-21]. https://www.chinaagrisci.com/CN/abstract/abstract21723.shtml.
[28]张亚东,张颖慧,董少玲,等. 特大粒水稻材料粒型性状的QTL检测[J]. 中国水稻科学,2013,27(2):122-128.
[29]Huang X H,Feng Q,Qian Q A,et al. High-throughput genotyping by whole-genome resequencing[J]. Genome Research,2009,19(6):1068-1076.
[30]Meng L,Li H H,Zhang L Y,et al. QTL IciMapping:Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations[J]. The Crop Journal,2015,3(3):269-283.
[31]McCouch S R.Gene nomenclature system for rice[J]. Rice,2008,1(1):72-84.
[32]Voorrips R E.MapChart:Software for the graphical presentation of linkage maps and QTLs[J]. Journal of Heredity,2002,93(1):77-78.
[33]方先文,张云辉,肖西林,等. 基于重组自交系群体的水稻粒形QTL定位[J]. 江苏农业学报,2017,33(2):241-247.
[34]梁云涛,潘英华,徐志健.利用野栽分离群体定位水稻粒型相关QTL[J]. 西南农业学报,2017,30(10):2161-2167.
[35]李金吉,张银霞,赵娜,等. 水稻粒形与千粒质量的QTL分析[J]. 西北农林科技大学学报(自然科学版),2021,49(2):54-60.
[36]徐建军,赵强,汤在祥,等. 利用重测序的染色体片段代换系群体定位水稻粒型QTL[J]. 中国水稻科学,2011,25(4):365-369.
[37]卫纯洁,陶亚军,范方军,等. 利用重测序染色体片段代换系群体定位水稻籽粒长宽比QTL[J]. 江苏农业科学,2020,48(6):36-40.
[38]张健,杨靖,王豪,等. 基于高密度遗传图谱定位水稻籽粒大小相关性状QTL[J]. 中国农业科学,2020,53(2):225-238.
[39]Tanabe S,Ashikari M,Fujioka S,et al. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant,dwarf11,with reduced seed length[J]. The Plant Cell,2005,17(3):776-790.

相似文献/References:

[1]马旭俊,刘春娟,吕世博,等.绿色荧光蛋白基因在水稻遗传转化中的应用[J].江苏农业科学,2013,41(04):35.
[2]李岳峰,居立海,张来运,等.水分胁迫下丛枝菌根对水稻/绿豆间作系统 作物生长和氮磷吸收的影响[J].江苏农业科学,2013,41(04):58.
[3]崔月峰,孙国才,王桂艳,等.不同施氮水平和前氮后移措施对水稻产量 及氮素利用率的影响[J].江苏农业科学,2013,41(04):66.
[4]张其蓉,宋发菊,田进山,等.长江中下游稻区水稻区域试验品种抗稻瘟病鉴定与评价[J].江苏农业科学,2013,41(04):92.
[5]王麒,张小明,卞景阳,等.不同插秧密度对黑龙江省第二积温带水稻产量及产量构成的影响[J].江苏农业科学,2013,41(05):60.
 Wang Qi,et al.Effect of different transplanting density on yield and yield component of rice in second temperature zone of Heilongjiang Province[J].Jiangsu Agricultural Sciences,2013,41(23):60.
[6]张国良,张森林,丁秀文,等.基质厚度和含水量对水稻育秧的影响[J].江苏农业科学,2013,41(05):62.
 Zhang Guoliang,et al.Effects of substrate thickness and water content on growth of rice seedlings[J].Jiangsu Agricultural Sciences,2013,41(23):62.
[7]赵忠宝,朱清海.稻-蟹-鳅生态系统的能值分析[J].江苏农业科学,2013,41(05):349.
 Zhao Zhongbao,et al.Emergy analysis of paddy-crab-loach ecosystem[J].Jiangsu Agricultural Sciences,2013,41(23):349.
[8]杨红福,姚克兵,束兆林,等.甲氧基丙烯酸酯类杀菌剂对水稻恶苗病的田间药效[J].江苏农业科学,2014,42(12):166.
 Yang Hongfu,et al.Field efficacy of strobilurin fungicides against rice bakanae disease[J].Jiangsu Agricultural Sciences,2014,42(23):166.
[9]唐成,陈露,安敏敏,等.稻瘟病诱导水稻幼苗叶片氧化还原系统的特征谱变化[J].江苏农业科学,2014,42(12):141.
 Tang Cheng,et al.Characteristic spectral changes of redox homeostasis system in rice seedling leaves induced by rice blast[J].Jiangsu Agricultural Sciences,2014,42(23):141.
[10]万云龙.优质水稻—春甘蓝轮作高效栽培模式[J].江苏农业科学,2014,42(12):90.
 Wan Yunlong.Efficient cultivation mode of high quality rice-spring cabbage rotation[J].Jiangsu Agricultural Sciences,2014,42(23):90.
[11]林静,张云辉,张所兵,等.水稻地方品种高抗性淀粉含量QTL挖掘与定位[J].江苏农业科学,2021,49(23):58.
 Lin Jing,et al.Mining and mapping of QTLs for high-resistant starch content in rice landraces[J].Jiangsu Agricultural Sciences,2021,49(23):58.

备注/Memo

备注/Memo:
收稿日期:2021-10-06
基金项目:国家自然科学基金(编号:31901485);江苏省重点研发计划(编号:BE2021301);现代农业产业技术体系建设专项(编号:CARS-01-67)。
作者简介:梁文化(1984—),男,山东临沂人,博士,助理研究员,主要从事水稻粒型基因研究。E-mail:liangwenhua0228@126.com。
通信作者:张亚东,博士,研究员,主要从事水稻遗传育种研究。E-mail:zhangyd@jaas.ac.cn。
更新日期/Last Update: 2021-12-05