|本期目录/Table of Contents|

[1]宣富君,王坤,曹佳欣,等.基于卵巢转录组中华绒螯蟹大规格亲本育苗优势的分子机理[J].江苏农业科学,2021,49(23):166-173.
 Xuan Fujun,et al.Molecular mechanism of breeding superiority of large-sized parents of Chinese mitten crab based on ovarian transcriptome[J].Jiangsu Agricultural Sciences,2021,49(23):166-173.
点击复制

基于卵巢转录组中华绒螯蟹大规格亲本育苗优势的分子机理(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第49卷
期数:
2021年第23期
页码:
166-173
栏目:
畜牧兽医与水产蚕桑
出版日期:
2021-12-05

文章信息/Info

Title:
Molecular mechanism of breeding superiority of large-sized parents of Chinese mitten crab based on ovarian transcriptome
作者:
宣富君1 王坤1 曹佳欣1 付龙龙2 张建光3 潘建林2 管卫兵4 成永旭5
1.盐城师范学院湿地学院/江苏省盐土生物资源研究重点实验室,江苏盐城 224051;2.江苏省淡水水产研究所,江苏南京 210017;3.江苏大仁水产良种有限公司,江苏盐城 224300;4.上海海洋大学海洋生态与环境学院,上海 201306;5.上海海洋大学省部共建水产种质资源发掘与利用教育部重点实验室,上海 201306
Author(s):
Xuan Fujunet al
关键词:
中华绒螯蟹大规格亲本育苗转录组分子机理
Keywords:
-
分类号:
S968.25
DOI:
-
文献标志码:
A
摘要:
种质退化是当下河蟹产业健康发展所面临的重要课题之一,目前科研单位和养殖户逐步认识到选用大规格亲本(雄性:≥ 200 g;雌性:≥ 150 g)所育苗种在后续成蟹养殖上的优势,纷纷推荐和选用大规格亲本苗种,但其潜在的分子机制尚不清楚。本研究首次基于卵巢比较转录组(大规格与一般规格)探讨中华绒螯蟹大规格亲本潜在的分子优势。结果表明:2组共检测到8 772个差异表达基因(5 307个上调,3 465个下调),其中43个常见差异基因出现在与生殖、免疫和生长相关的15条通路中。经qRT-PCR验证,对其中9个相关基因(包括TRINITY_DN13931_c0_g1、TRINITY_DN1908_c0_g2和TRINITY_DN6686_c0_g1)开展进一步研究。这些被证实的常见差异表达基因主要富集于细胞凋亡、胰岛素信号和mTOR信号等途径。为进一步探讨利用大规格亲本遗传育种奠定了重要的分子基础,并在生长、繁殖和免疫方面指出了利用大规格亲本育苗潜在的分子优势,不仅可以丰富甲壳动物繁育生物学的基本理论,而且可为今后河蟹大规格优质苗种的推广提供必要的理论支撑。
Abstract:
-

参考文献/References:

[1]赵乃刚. 河蟹育苗工厂化的进展[J]. 渔业现代化,1979,6(1):34-35.
[2]韩炳炎. 河蟹养殖高产技术问答[M]. 北京:中国农业出版社,1996.
[3]虞丽娟,杨劲松,凌培亮,等. 基于物联网智慧服务的中华绒螯蟹蟹种质量动态追溯系统研究[J]. 水产学报,2013,37(8):1262-1269.
[4]陈伟,王春,杨印蹼,等. 中华绒螯蟹在西藏高原条件下越冬期生化组分的变化[J]. 上海海洋大学学报,2014,23(5):733-740.
[5]张显良. 中国渔业统计年鉴[M]. 北京:中国农业出版社,2019.
[6]Cheng Y X,Wu X G,Yang X Z,et al. Current trends in hatchery techniques and stock enhancement for Chinese mitten crab,Eriocheir japonica sinensis[J]. Reviews in Fisheries Science,2008,16(1/2/3):377-384.
[7]Wang Q D,Liu J S,Zhang S Y,et al. Sustainable farming practices of the Chinese mitten crab (Eriocheir sinensis) around Hongze Lake,Lower Yangtze River Basin,China[J]. Ambio,2016,45(3):361-373.
[8]王少兵,刘乃更,姜晓东,等. 三种亲本规格河蟹土池育苗的试验总结[J]. 科学养鱼,2019(6):12-13.
[9]茅海成,王高龙,杨永超,等. 中华绒螯蟹不同规格亲蟹池塘生态育苗效果的生产性评估[J]. 水产科技情报,2014,41(5):233-236.
[10]陈军伟,马旭洲,王武,等. 不同规格中华绒螯蟹母本子代的生长特性比较[J]. 动物学杂志,2016,51(5):895-906.
[11]何先林,姜晓东,王海宁,等. 池塘养殖不同规格中华绒螯蟹扣蟹生化组成的比较研究[J]. 水产科技情报,2019,46(6):316-319,323.
[12]张红水. 大亲本蟹苗养殖试验研究[J]. 乡村科技,2018(4):110-111.
[13]Ran M L,Chen B,Li Z,et al. Systematic identification of long noncoding RNAs in immature and mature porcine testes[J]. Biology of Reproduction,2016,94(4):77,1-9.
[14]Andrews S. Babraham bioinformatics-FastQC a quality control tool for high-throughput sequence data[EB/OL]. [2021-06-20]. https://www. bioinformatics. babraham.ac.uk/projects/fastqc/.
[15]Bankar K G,Todur V N,Shukla R N,et al. Ameliorated de novo transcriptome assembly using Illumina paired end sequence data with Trinity Assembler[J]. Genomics Data,2015,5:352-359.
[16]Du Y H,Huang Q H,Arisdakessian C,et al. Evaluation of STAR and kallisto on single cell RNA-seq data alignment[J]. Genes,Genomes,Genetics,2020,10(5):1775-1783.
[17]Robinson M D,McCarthy D J,Smyth G K.edgeR:a bioconductor package for differential expression analysis of digital gene expression data[J]. Bioinformatics,2009,26(1):139-140.
[18]Livak K J,Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods,2001,25(4):402-408.
[19]Consortium G O.The Gene Ontology (GO) database and informatics resource[J]. Nucleic Acids Research,2004,32(S1):D258-D261.
[20]Kanehisa M,Goto S. KEGG:kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Research,2000,28(1):27-30.
[21]Bao C C,Yang Y N,Huang H Y,et al. Inhibitory role of the mud crab short neuropeptide F in vitellogenesis and oocyte maturation via autocrine/paracrine signaling[J]. Frontiers in Endocrinology,2018,9:390.
[22]Dissous C.Venus kinase receptors at the crossroads of insulin signaling:their role in reproduction for helminths and insects[J]. Frontiers in Endocrinology,2015,6:118.
[23]Nijhout H F,Riddiford L M,Mirth C,et al. The developmental control of size in insects[J]. Wiley Interdisciplinary Reviews:Developmental Biology,2014,3(1):113-134.
[24]Huang X S,Ye H H,Huang H Y,et al. An insulin-like androgenic gland hormone gene in the mud crab,Scylla paramamosain,extensively expressed and involved in the processes of growth and female reproduction[J]. General and Comparative Endocrinology,2014,204:229-238.
[25]Huang X S,Feng B Y,Huang H Y,et al. In vitro stimulation of vitellogenin expression by insulin in the mud crab,Scylla paramamosain,mediated through PI3K/Akt/TOR pathway[J]. General and Comparative Endocrinology,2017,250:175-180.
[26]Huang X S,Ye H H,Feng B Y,et al. Insights into insulin-like peptide system in invertebrates from studies on IGF binding domain-containing proteins in the female mud crab,Scylla paramamosain[J]. Molecular and Cellular Endocrinology,2015,416:36-45.
[27]Wang L,Chen H,Wang L L,et al. An insulin-like peptide serves as a regulator of glucose metabolism in the immune response of Chinese mitten crab Eriocheir sinensis[J]. Developmental & Comparative Immunology,2020,108:103686.
[28]Sarbassov D D,Ali S M,Sabatini D M. Growing roles for the mTOR pathway[J]. Current Opinion in Cell Biology,2005,17(6):596-603.
[29]Jia K L,Chen D,Riddle D L.The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development,metabolism and life span[J]. Development,2004,131(16):3897-3906.
[30]Das S,Pitts N L,Mudron M R,et al. Transcriptome analysis of the molting gland (Y-organ) from the blackback land crab,Gecarcinus lateralis[J]. Comparative Biochemistry and Physiology Part D:Genomics & Proteomics,2016,17:26-40.
[31]Cosenza K S. Role of ecdysteroids on Myostatin and mTOR signaling gene expression in molt-dependent growth and atrophy of skeletal muscle in Gecarcinus lateralis and Carcinus maenas[D]. The Colorado State University Libraries,2016.
[32]Shyamal S,Das S,Guruacharya A,et al. Transcriptomic analysis of crustacean molting gland (Y-organ) regulation via the mTOR signaling pathway[J]. Scientific Reports,2018,8(1):7307.
[33]Lum J J,Bauer D E,Kong M,et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis[J]. Cell,2005,120(2):237-248.
[34]Li J S,Dong L X,Zhu D P,et al. An effector caspase Sp-caspase first identified in mud crab Scylla paramamosain exhibiting immune response and cell apoptosis[J]. Fish & Shellfish Immunology,2020,103:442-453.
[35]Johansson M W,Keyser P,Sritunyalucksana K,et al. Crustacean haemocytes and haematopoiesis[J]. Aquaculture,2000,191(1/2/3):45-52.
[36]Qu C,Sun J J,Xu Q S,et al. An inhibitor of apoptosis protein (EsIAP1) from Chinese mitten crab Eriocheir sinensis regulates apoptosis through inhibiting the activity of EsCaspase-3/7-1[J]. Scientific Reports,2019,9(1):20421.
[37]Yan B Y,Liu X M,Zhou Y Q,et al. Transcriptomic analysis reveals that hepatopancreatic necrosis disease in Eriocheir sinensis (Chinese mitten crabs) may be the result of autophagy and apoptosis[J]. Aquaculture,2020,515:734579.
[38]Jin X K,Li W W,He L,et al. Molecular cloning,characterization and expression analysis of two apoptosis genes,caspase and nm23,involved in the antibacterial response in Chinese mitten crab,Eriocheir sinensis[J]. Fish & Shellfish Immunology,2011,30(1):263-272.
[39]Jin X K,Li W W,Wang Q.Caspase and nm23:apoptosis genes linked to the antibacterial response of the Chinese mitten crab[J]. Bioengineered Bugs,2011,2(3):174-177.

相似文献/References:

[1]时冬头,许祥,陈贤明.中华绒螯蟹成蟹生长与主要气象因素的关系[J].江苏农业科学,2013,41(04):226.
[2]封琦,王建国,陈小江,等.高效液相色谱法分析中华绒螯蟹体内土霉素残留[J].江苏农业科学,2013,41(04):266.
[3]管卫兵,杨牧川,王成辉.长江口九段沙中华绒螯蟹资源状况分析[J].江苏农业科学,2013,41(12):244.
 Guan Weibing,et al.Analysis of Eriocheir sinensis resources in Jiuduansha wetland of the Yangtze River estuary[J].Jiangsu Agricultural Sciences,2013,41(23):244.
[4]徐逍,杨彩根,付监贵,等.ELISA法检测不同条件下中华绒螯蟹中恩诺沙星的残留量[J].江苏农业科学,2015,43(11):399.
 Xu Xiao,et al.ELISA determination of enrofloxacin residues in Chinese mitten crab (Eriocheir sinensis) under different conditions[J].Jiangsu Agricultural Sciences,2015,43(23):399.
[5]徐奕晴,祝向阳,颜培实.生物发酵饲料对中华绒螯蟹幼蟹生长、饲料利用及抗氧化酶活性的影响[J].江苏农业科学,2014,42(07):237.
 Xu Yiqing,et al.Effects of biological fermentation feed on growth,feed conversion,and antioxidant enzyme activity of juvenile Chinese mitten crab,Eriocheir sinensis[J].Jiangsu Agricultural Sciences,2014,42(23):237.
[6]孙学亮,孙朦朦,季延斌,等.生芪、连翘对中华绒螯蟹生长及健康指标的影响[J].江苏农业科学,2015,43(01):224.
 Sui Xueliang,et al.Effects of Astragali Radix and Forsythia Suspense on growth and health indicators of Eriocheir sinensis[J].Jiangsu Agricultural Sciences,2015,43(23):224.
[7]付龙龙,周刚,李跃华,等.中华绒螯蟹蟹种性早熟研究进展[J].江苏农业科学,2017,45(12):19.
 Fu Longlong,et al.Research progress on sexual precocity of Eriocheir sinensis[J].Jiangsu Agricultural Sciences,2017,45(23):19.
[8]王伟,顾海龙,胡中泽,等.南粳9108水稻-中华绒螯蟹共作模式下水体理化指标与生长动态分析[J].江苏农业科学,2017,45(12):109.
 Wang Wei,et al.Dynamic analysis of water physicochemical indices and growth characteristics of japonica rice-crab system[J].Jiangsu Agricultural Sciences,2017,45(23):109.
[9]田功太,许国晶,李壮,等.高等水生植物与底栖动物对中华绒螯蟹养殖底质环境的协同净化效果[J].江苏农业科学,2019,47(12):212.
 Tian Gongtai,et al.Combined purification effect of higher aquatic plants and benthic animals on sediment environment for river crab breeding[J].Jiangsu Agricultural Sciences,2019,47(23):212.
[10]令狐克川,张瑞强,张干,等.植物甾醇对中华绒螯蟹生长性能、血清生化指标、体成分和抗氧化能力的影响[J].江苏农业科学,2019,47(18):204.
 Linghu Kechuan,et al.Effects of phytosterols on growth performance,serum biochemical parameters,body composition,and antioxidant capacity of Chinese mitten crab[J].Jiangsu Agricultural Sciences,2019,47(23):204.

备注/Memo

备注/Memo:
收稿日期:2021-08-01
基金项目:江苏省种业振兴“揭榜挂师”专项(中华绒螯蟹种质资源);江苏现代农业产业技术体系建设专项(编号:JATS[2020]362);宁夏自治区科技厅重点项目(编号:2020ZDYF0860);江苏省科技厅省政策引导类计划-苏北科技专项(编号:SZ-YC202041);江苏省产学研项目(编号:BY2020587)。
作者简介:宣富君(1981—),男,浙江绍兴人,博士,副研究员,主要从事甲壳动物生殖生物学研究。E-mail:swimming_crab@126.com。
更新日期/Last Update: 2021-12-05