|本期目录/Table of Contents|

[1]安飞飞,薛晶晶,韦卓文,等.α-甘露糖苷酶与木薯块根采后生理变质的关系[J].江苏农业科学,2022,50(2):165-169.
 An Feifei,et al.Relationship between α-mannosidase and postharvest physiological deterioration of cassava tuberous roots[J].Jiangsu Agricultural Sciences,2022,50(2):165-169.
点击复制

α-甘露糖苷酶与木薯块根采后生理变质的关系(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第2期
页码:
165-169
栏目:
贮藏加工与检测分析
出版日期:
2022-01-20

文章信息/Info

Title:
Relationship between α-mannosidase and postharvest physiological deterioration of cassava tuberous roots
作者:
安飞飞 薛晶晶 韦卓文 陈松笔
中国热带农业科学院热带作物品种资源研究所/农业农村部木薯种质资源保护与利用重点实验室,海南海口 571101
Author(s):
An Feifeiet al
关键词:
木薯块根α-甘露糖苷酶采后生理变质
Keywords:
-
分类号:
S533.01
DOI:
-
文献标志码:
A
摘要:
分析α-甘露糖苷酶与木薯块根采后生理变质(PPD)发生的关系,为有效控制木薯PPD发生提供新思路。采用RT-PCR分析α-甘露糖苷酶基因在块根PPD发生过程中的表达模式,ELISA检测α-甘露糖苷酶活性变化。SC9完整薯块储存5 d后开始出现PPD现象,20 μmol/L几夫碱喷施木薯块根切片可显著延缓PPD的发生。随着PPD程度的加重,α-甘露糖苷酶活性显著增高,在储存9 d时达到最大值326.24 U/L。MeMNS1、MeMNS4、MeGMII的表达随着PPD过程而逐步增强,且MeGMII表达最显著,采后9 d SC9块根中MeGMII的表达量达到对照的28.05倍,而MeMNS3-1、MeMNS3-2、MeMNS5表达的变化与木薯块根PPD程度间无明显规律。α-甘露糖苷酶参与木薯块根PPD发生的过程,且α-甘露糖苷酶活性与PPD程度呈正相关,其中MeGMII可能是参与此过程的关键基因。
Abstract:
-

参考文献/References:

[1]马秋香,许佳,乔爱民,等. 木薯储藏根采后生理性变质研究进展[J]. 热带亚热带植物学报,2009,17(3):309-314.
[2]Djabou A S M,Carvalho L J C B,Li Q X,et al. Cassava postharvest physiological deterioration:a complex phenomenon involving calcium signaling,reactive oxygen species and programmed cell death[J]. Acta Physiologiae Plantarum,2017,39(4):91.
[3]张鹏,安冬,马秋香,等. 木薯分子育种中若干基本科学问题的思考与研究进展[J]. 中国科学(生命科学),2013,43(12):1082-1089.
[4]Djabou A S M,Qin Y L,Thaddee B,et al. Effects of calcium and magnesium fertilization on antioxidant activities during cassava postharvest physiological deterioration[J]. Crop Science,2018,58(3):1385-1392.
[5]Qin Y L,Djabou A S M,An F F,et al. Proteomic analysis of injured storage roots in cassava (Manihot esculenta Crantz) under postharvest physiological deterioration[J]. PLoS One,2017,12(3):e0174238.
[6]秦于玲. 木薯贮藏根采后生理腐烂的蛋白质组和转录组分析 [D]. 广州:华南师范大学,2017.
[7]Uarrota V G,Maraschin M.Metabolomic,enzymatic,and histochemical analyzes of cassava roots during postharvest physiological deterioration[J]. BMC Research Notes,2015,8:648.
[8]Hu W,Kong H,Guo Y L,et al. Comparative physiological and transcriptomic analyses reveal the actions of melatonin in the delay of postharvest physiological deterioration of cassava[J]. Frontiers in Plant Science,2016,7:736.
[9]Ma Q X,Zhang T,Zhang P,et al. Melatonin attenuates postharvest physiological deterioration of cassava storage roots[J]. Journal of Pineal Research,2016,60(4):424-434.
[10]Uarrota V G,Moresco R,Schmidt E C,et al. The role of ascorbate peroxidase,guaiacol peroxidase,and polysaccharides in cassava (Manihot esculenta Crantz) roots under postharvest physiological deterioration[J]. Food Chemistry,2016,197:737-746.
[11]Morante N,Sánchez T,Ceballos H,et al. Tolerance to postharvest physiological deterioration in cassava roots[J]. Crop Science,2010,50(4):1333-1338.
[12]Salcedo A.Insights into the physiological,biochemical and molecular basis of postharvest deterioration in cassava (Manihot esculenta) roots[J]. American Journal of Experimental Agriculture,2011,1(4):414-431.
[13]Neubauer J D,Lulai E C,Thompson A L,et al. Wounding coordinately induces cell wall protein,cell cycle and pectin methyl esterase genes involved in tuber closing layer and wound periderm development[J]. Journal of Plant Physiology,2012,169(6):586-595.
[14]Beeching J R,Reilly K,Gómezvásquez R,et al. Post-harvest physiological deterioration of cassava [D]. Bath:University of Bath,2002.
[15]Owiti J,Grossmann J,Gehrig P,et al. iTRAQ-based analysis of changes in the cassava root proteome reveals pathways associated with post-harvest physiological deterioration[J]. The Plant Journal,2011,67(1):145-156.
[16]王铎,孙春玉,陈静,等. 真核生物α-甘露糖苷酶生物信息学分析[J]. 生命科学研究,2018,22(3):173-183.
[17]王姗姗,徐向军,路浩,等. α-甘露糖苷酶研究进展[J]. 动物医学进展,2012,33(1):92-97.
[18]Park J K. Purification and characterisation of a novel alkalophilic α-D-mannosidase from Pseudomonas fluorescens[J]. Biocontrol Science and Technology,2013,23(11):1324-1335.
[19]Strasser R,Schoberer J,Jin C S,et al. Molecular cloning and characterization of Arabidopsis thaliana Golgi α-mannosidase II,a key enzyme in the formation of complex N-glycans in plants[J]. The Plant Journal,2006,45(5):789-803.
[20]罗川,曹丽军,赵彩平,等. 耐贮性不同桃果实采后软化过程中α-甘露糖苷酶活性变化[J]. 西北农业学报,2013,22(10):116-119.
[21]Meli V S,Ghosh S,Prabha T N,et al. Enhancement of fruit shelf life by suppressing N-glycan processing enzymes[J]. PNAS,2010,107(6):2413-2418.
[22]Jagadeesh B H,Prabha T N,Srinivasan K. Activities of β-hexosaminidase and α-mannosidase during development and ripening of bell Capsicum (Capsicum annuum var. variata)[J]. Plant Science,2004,167(6):1263-1271.
[23]Ghosh S,Meli V S,Kumar A,et al. The N-glycan processing enzymes α-mannosidase and β-D-N-acetylhexosaminidase are involved in ripening-associated softening in the non-climacteric fruits of Capsicum[J]. Journal of Experimental Botany,2011,62(2):571-582.
[24]Yashoda H M,Prabha T N,Tharanathan R N.Mango ripening - Role of carbohydrases in tissue softening[J]. Food Chemistry,2007,102(3):691-698.
[25]薛炳烨,毛志泉,束怀瑞. 草莓果实发育成熟过程中糖苷酶和纤维素酶活性及细胞壁组成变化[J]. 植物生理与分子生物学学报,2006,32(3):363-368.
[26]党维鑫. 转α-甘露糖苷酶基因超表达、干扰载体甜瓜株系的生理生化分析[D]. 呼和浩特:内蒙古大学,2015.
[27]An F F,Baker M R,Qin Y L,et al. Relevance of class Ⅰ α-mannosidases to cassava postharvest physiological deterioration[J]. ACS Omega,2019,4(5):8739-8746.
[28]Zainuddin I M,Fathoni A,Sudarmonowati E,et al. Cassava post-harvest physiological deterioration:from triggers to symptoms[J]. Postharvest Biology and Technology,2018,142:115-123.
[29]黄志明,林素英,傅明连,等. 枇杷果实发育过程中果肉质地与胞壁酶活性的变化[J]. 热带作物学报,2012,33(1):24-29.
[30]罗川,曹丽军,赵彩平,等. 桃沙红果实α-甘露糖苷酶基因(α-man)克隆及其在软化过程中的表达分析[J]. 农业生物技术学报,2013,21(9):1060-1067.
[31]王铎,张美萍,王义. α-甘露糖苷酶的研究进展[J]. 生命科学,2018,30(6):652-658.
[32]安飞飞,崔梦佳,杨龙,等. 木薯MeGalt1基因克隆、在采后生理腐烂过程中表达分析及载体构建[J]. 福建农林大学学报(自然科学版),2021,50(2):244-249.
[33]陈松笔,安飞飞,张振文,等. 木薯综合育种理论探讨[J]. 生命科学,2016,28(7):807-816.
[34]赵平娟,孙海彦,黎娟华,等. 木薯采后生理性变质的研究进展[J]. 热带农业科学,2013,33(1):35-41.
[35]Ceballos H,Iglesias C A,Pérez J C,et al. Cassava breeding:opportunities and challenges[J]. Plant Molecular Biology,2004,56(4):503-516.
[36]Xu J,Duan X G,Yang J,et al. Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots[J]. Plant Physiology,2013,161(3):1517-1528.
[37]Vanderschuren H,Nyaboga E,Poon J S,et al. Large-scale proteomics of the cassava storage root and identification of a target gene to reduce postharvest deterioration[J]. The Plant Cell,2014,26(5):1913-1924.
[38]Beyene G,Solomon F R,Chauhan R D,et al. Provitamin A biofortification of cassava enhances shelf life but reduces dry matter content of storage roots due to altered carbon partitioning into starch[J]. Plant Biotechnology Journal,2018,16(6):1186-1200.

相似文献/References:

[1]岑湘涛,沈伟,杨美纯,等.木薯组织培养外植体选择和灭菌研究[J].江苏农业科学,2014,42(11):71.
 Cen Xiangtao,et al(7).Study on explant selection and sterilization in tissue culture of Manihot esculenta[J].Jiangsu Agricultural Sciences,2014,42(2):71.
[2]石兰蓉,卢赛清,黄秋伟,等.木薯花粉活力与柱头可授性研究[J].江苏农业科学,2013,41(08):98.
 Shi Lanrong,et al.Study on pollen viability and stigma receptivity of cassava[J].Jiangsu Agricultural Sciences,2013,41(2):98.
[3]熊军,闫海锋,韦绍丽,等.木薯+花生间作对作物光合特性、农艺性状和产量的影响[J].江苏农业科学,2016,44(06):165.
 Xiong Jun,et al.Effects of cassava and peanut intercropping on photosynthesis characteristics, agronomic traits and yield of crops[J].Jiangsu Agricultural Sciences,2016,44(2):165.
[4]陈俊英,刘永丽,黄会杰,等.木薯粉乙醇清液发酵中糖化条件的研究[J].江苏农业科学,2015,43(07):272.
 Chen Junying,et al.Study on saccharification condition of ethanol fermentation of cassava starch clarifying liquor[J].Jiangsu Agricultural Sciences,2015,43(2):272.
[5]曾文丹,罗兴录.2个淀粉含量不同木薯品种SSⅡ基因序列及不同生育期淀粉含量比较[J].江苏农业科学,2015,43(05):35.
 Zeng Wendan,et al.Comparative study on SSII gene sequence and starch content of two cassava varieties[J].Jiangsu Agricultural Sciences,2015,43(2):35.
[6]黎 萍,黄秋伟,彭靖茹,等.木薯胚性愈伤组织诱导及其离体保存的研究[J].江苏农业科学,2015,43(02):48.
 Li Ping,et al.Induction and in vitro preservation of cassava embryogenic callus[J].Jiangsu Agricultural Sciences,2015,43(2):48.
[7]韦彩会,何永群,曾向阳,等.施肥与耕作技术集成对木薯生长、产量及经济效益的影响[J].江苏农业科学,2016,44(08):148.
 Wei Caihui,et al.Effects of fertilization and tillage technology integration on growth, yield and economic benefits of cassava[J].Jiangsu Agricultural Sciences,2016,44(2):148.
[8]耿彬彬,刘姣,郭育强,等.木薯MeCWINV4启动子的克隆及其活性分析[J].江苏农业科学,2016,44(04):36.
 Geng Binbin,et al.Cloning and active analysis of cassava MeCWINV4 promoter[J].Jiangsu Agricultural Sciences,2016,44(2):36.
[9]丛汉卿,齐尧尧,朱文丽,等.木薯PHOR1基因的序列分析及其乙烯和茉莉酸甲酯诱导表达特性[J].江苏农业科学,2016,44(11):29.
 Cong Hanqing,et al.Sequence analysis of PHOR1 gene and its expression characteristics induced by ethylene and methyl jasmonate in Manihot esculenta Crantz[J].Jiangsu Agricultural Sciences,2016,44(2):29.
[10]韦剑锋,韦冬萍,岑忠用,等.供氮方式对木薯生理与农艺性状的影响[J].江苏农业科学,2016,44(11):127.
 Wei Jianfeng,et al.Effects of nitrogen application types on physiological and agronomic properties of cassava[J].Jiangsu Agricultural Sciences,2016,44(2):127.

备注/Memo

备注/Memo:
收稿日期:2021-05-17
基金项目:国家重点研发计划(编号:2019YFD1000501);海南省自然科学基金(编号:320MS100)。
作者简介:安飞飞(1983—),女,河北保定人,硕士,副研究员,主要从事木薯抗性育种研究。E-mail:aff85110@163.com。
通信作者:陈松笔,博士,研究员,主要从事木薯遗传育种研究工作。E-mail:songbichen@catas.cn。
更新日期/Last Update: 2022-01-20