|本期目录/Table of Contents|

[1]汪毅,郭海林,宗俊勤,等.干旱胁迫及复水条件下2种抗旱性不同结缕草种质的生长和生理响应[J].江苏农业科学,2022,50(9):159-168.
 Wang Yi,et al.Growth and physiological responses of two zoysia germplasms with different drought resistance under drought stress and rewatering conditions[J].Jiangsu Agricultural Sciences,2022,50(9):159-168.
点击复制

干旱胁迫及复水条件下2种抗旱性不同结缕草种质的生长和生理响应(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第9期
页码:
159-168
栏目:
园艺与林学
出版日期:
2022-05-05

文章信息/Info

Title:
Growth and physiological responses of two zoysia germplasms with different drought resistance under drought stress and rewatering conditions
作者:
汪毅郭海林宗俊勤陈静波李丹丹李建建刘建秀
江苏省中国科学院植物研究所,江苏南京 210014
Author(s):
Wang Yiet al
关键词:
结缕草干旱胁迫渗透保护抗氧化酶光合作用
Keywords:
-
分类号:
S688.401
DOI:
-
文献标志码:
A
摘要:
结缕草(Zoysia japonica Steud.)种内在抗旱性方面存在广泛的遗传变异,其抗旱机制值得深入探讨。本试验中,将2份抗旱性差异显著的结缕草种质(Z077:抗旱型;Z119:敏旱型)栽植于装满河沙的聚氯乙烯管中,以研究其在干旱胁迫(停止浇水)及复水条件下的生长和生理响应。结果表明,干旱胁迫下,Z077的叶片过氧化氢酶(CAT)活性维持在对照水平,同时抗坏血酸过氧化物酶(APX)活性先上升后下降,基本高于对照,而Z119的CAT活性则在干旱胁迫下显著低于对照(P<0.05),同时APX活性在整个处理过程中与对照差异不显著。干旱胁迫9 d,2份种质的净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)均出现下降,与Z077相比,Z119的降幅更明显;干旱胁迫17 d,Z077的Gs恢复至对照水平,而Z119的PnGsTr仍显著或极显著(P<0.01)低于对照;复水18 d,Z077的Pn表现出超补偿效应;整个处理过程中,Z077的胞间CO2浓度始终处于对照水平,Z119则在干旱胁迫下显著或极显著高于对照。干旱胁迫下,Z077的叶绿素浓度与对照无显著差异,Z119在干旱17 d时显著低于对照。尽管在干旱胁迫期间,2份种质的各项生物量指标并未与对照产生明显差异,但处理结束时,与对照相比,Z077的总干质量未受影响同时根冠比显著增加,而Z119的总干质量则显著下降。上述结果表明,相对于Z119,Z077通过维持CAT活性、提高APX活性、维持较为活跃的光合气体交换和较高的叶绿素含量,能够更好地抵御逆境,减轻干旱胁迫对生长的不利影响。
Abstract:
-

参考文献/References:

[1]Huang B R,DaCosta M,Jiang Y W. Research advances in mechanisms of turfgrass tolerance to abiotic stresses:from physiology to molecular biology[J]. Critical Reviews in Plant Sciences,2014,33(2/3):141-189.
[2]金洪.中国结缕草(Zoysia japonica Steud.)遗传多样性研究[D]. 北京:北京林业大学,2004.
[3]黄春琼,刘国道,白昌军,等. 结缕草属植物种质资源遗传变异研究[J]. 热带作物学报,2018,39(7):1259-1265.
[4]胡化广,张振铭,季芳芳,等. 中国主要地区结缕草属植物种质资源抗旱性变异分析[J]. 草地学报,2014,22(2):224-228.
[5]Guo H L,Wang Y,Zhang B,et al. Association of candidate genes with drought tolerance traits in zoysiagrass germplasm[J]. Journal of Plant Physiology,2019,237:61-71.
[6]Marcum K B,Engelke M C,Morton S J,et al. Rooting characteristics and associated drought resistance of zoysiagrasses[J]. Agronomy Journal,1995,87(3):534-538.
[7]Rimi F,Macolino S,Ziliotto U.Rooting characteristics and turfgrass quality of three bermudagrass cultivars and a zoysiagrass[J]. Acta Agriculturae Scandinavica(Section B-Soil & Plant Science),2012,62(Sup1):24-31.
[8]Zhang J,Poudel B,Kenworthy K,et al. Drought responses of above-ground and below-ground characteristics in warm-season turfgrass[J]. Journal of Agronomy and Crop Science,2019,205(1):1-12.
[9]施建舟,王储,唐睿,等. 结缕草属植物水分利用效率与根系形态特征的关系分析[J]. 热带农业科学,2020,40(7):22-28.
[10]Chai Q,Jin F,Merewitz E,et al. Growth and physiological traits associated with drought survival and post-drought recovery in perennial turfgrass species[J]. Journal of the American Society for Horticultural Science,2010,135(2):125-133.
[11]Yi Z,Lambrides C J,Shu F K.Drought resistance and soil water extraction of a perennial C4 grass:contributions of root and rhizome traits[J]. Functional Plant Biology,2014,41(5):505-519.
[12]Xu C B,Li X M,Zhang L H.The effect of calcium chloride on growth,photosynthesis,and antioxidant responses of Zoysia japonica under drought conditions[J]. PLoS One,2013,8(7):e68214.
[13]俞乐,刘拥海,周丽萍,等. 干旱胁迫下结缕草叶片抗坏血酸与相关生理指标变化的品种差异研究[J]. 草业学报,2013,22(4):106-115.
[14]Bae E J,Han J J,Choi S M,et al. Evaluating pre-silicon treatment to alleviate drought stress and increases antioxidative activity in Zoysia japonica[J]. Weed & Turfgrass Science,2015,4(4):360-367.
[15]Fuentealba M P,Zhang J,Kenworthy K,et al. Transpiration responses of warm-season turfgrass in relation to progressive soil drying[J]. Scientia Horticulturae,2016,198:249-253.
[16]胡化广,张振铭,季芳芳,等. 干旱胁迫对结缕草叶绿素荧光和光合关键酶活性的影响[J]. 草地学报,2016,24(6):1304-1308.
[17]Zhang J,Kenworthy K,Unruh J B,et al. Physiological responses to soil drying by warm-season turfgrass species [J]. Crop Science,2017,57(Sup1):1-8.
[18]彭凯悦,杨春勐,许喆,等. 假俭草和结缕草在昆明地区的抗逆性及草坪质量比较[J]. 草学,2018(6):65-71.
[19]张博文,李富平,许永利,等. PEG-6000模拟干旱胁迫下五种草本植物的抗旱性[J]. 分子植物育种,2018,16(8):2686-2695.
[20]Abraham E M,Huang B R,Bonos S A,et al. Evaluation of drought resistance for Texas bluegrass,Kentucky bluegrass,and their hybrids[J]. Crop Science,2004,44(5):1746-1753.
[21]DaCosta M,Wang Z L,Huang B R.Physiological adaptation of Kentucky bluegrass to localized soil drying[J]. Crop Science,2004,44(4):1307-1314.
[22]张宪政.植物叶绿素含量测定:丙酮乙醇混合液法[J]. 辽宁农业科学,1986(3):26-28.
[23]李忠光,李江鸿,杜朝昆,等. 在单一提取系统中同时测定五种植物抗氧化酶[J]. 云南师范大学学报(自然科学版),2002,22(6):44-48.
[24]李合生.植物生理生化实验原理和技术[M]. 北京:高等教育出版社,2000.
[25]Huang B R,Fu J M.Photosynthesis,respiration,and carbon allocation of two cool-season perennial grasses in response to surface soil drying[J]. Plant and Soil,2000,227(1/2):17-26.
[26]Pirnajmedin F,Majidi M M,Gheysari M. Root and physiological characteristics associated with drought tolerance in Iranian tall fescue[J]. Euphytica,2015,202(1):141-155.
[27]Yi Z,Lambrides C J,Shu F K.Associations between drought resistance,regrowth and quality in a perennial C4 grass[J]. European Journal of Agronomy,2015,65:1-9.
[28]Serraj R,Sinclair T R.Osmolyte accumulation:can it really help increase crop yield under drought conditions?[J]. Plant,Cell & Environment,2002,25(2):333-341.
[29]Kempf B,Bremer E.Stress responses of Bacillus subtilis to high osmolarity environments:Uptake and synthesis of osmoprotectants[J]. Journal of Biosciences,1998,23(4):447-455.
[30]DaCosta M,Huang B R.Osmotic adjustment associated with variation in bentgrass tolerance to drought stress[J]. Journal of the American Society for Horticultural Science,2006,131(3):338-344.
[31]Volaire F,Thomas H,Lelièvre F.Survival and recovery of perennial forage grasses under prolonged Mediterranean drought:Ⅰ.Growth,death,water relations and solute content in herbage and stubble[J]. New Phytologist,1998,140(3):439-449.
[32]Delauney A J,Verma D P S.Proline biosynthesis and osmoregulation in plants[J]. The Plant Journal,1993,4(2):215-223.
[33]Luo N,Liu J X,Yu X Q,et al. Natural variation of drought response in Brachypodium distachyon[J]. Physiologia Plantarum,2011,141(1):19-29.
[34]Shi H R,Wang B,Yang P J,et al. Differences in sugar accumulation and mobilization between sequential and non-sequential senescence wheat cultivars under natural and drought conditions[J]. PLoS One,2016,11(11):e0166155.
[35]Yang Z M,Xu L X,Yu J J,et al. Changes in carbohydrate metabolism in two Kentucky bluegrass cultivars during drought stress and recovery[J]. Journal of the American Society for Horticultural Science,2013,138(1):24-30.
[36]景蕊莲,昌小平,胡荣海,等. 变水处理条件下小麦幼苗的甜菜碱代谢与抗旱性的关系[J]. 作物学报,1999,25(4):494-498.
[37]Wang G P,Li F,Zhang J,et al. Overaccumulation of Glycine betaine enhances tolerance of the photosynthetic apparatus to drought and heat stress in wheat[J]. Photosynthetica,2010,48(1):30-41.
[38]刘思露,杨鹏,尹淑霞. 外源甜菜碱对匍匐翦股颖的抗旱性调控作用分析[J]. 草业学报,2015,24(3):80-88.
[39]Bian S M,Jiang Y W. Reactive oxygen species,antioxidant enzyme activities and gene expression patterns in leaves and roots of Kentucky bluegrass in response to drought stress and recovery[J]. Scientia Horticulturae,2009,120(2):264-270.
[40]Lawlor D W. Limitation to photosynthesis in water-stressed leaves:stomata vs.metabolism and the role of ATP[J]. Annals of Botany,2002,89(7):871-885.
[41]刘金荣,杜建雄,谢晓蓉.干热胁迫和复水对草坪草光合生理生态特性的影响[J]. 生态学报,2009,29(5):2694-2700.

相似文献/References:

[1]张金然,缑艳霞,孙丽鹏.固氮螺菌157对玉米、向日葵的促生长作用[J].江苏农业科学,2014,42(12):116.
 Zhang Jinran,et al.Effects of Azospirillum 157 on growth of maize and sunflower[J].Jiangsu Agricultural Sciences,2014,42(9):116.
[2]李光,龚宁.干旱胁迫对金线兰POD活性及同工酶酶谱的影响[J].江苏农业科学,2014,42(11):208.
 Li Guang,et al(08).Effects of drought stress on activity and isoenzyme zymogram of POD in Anoectochilus roxburghii[J].Jiangsu Agricultural Sciences,2014,42(9):208.
[3]陈莹,钟理,赵丽丽,等.截叶铁扫帚种子萌发期对岩溶生境高钙干旱的生理生化反应[J].江苏农业科学,2014,42(09):335.
 Chen Ying,et al.Physiological and biochemical responses of Lespedeza cuneata seedlings to different calcium and drought stresses in karst habitats[J].Jiangsu Agricultural Sciences,2014,42(9):335.
[4]余莉琳,裴宗平,常晓华,等.干旱胁迫及复水对4种矿区生态修复草本植物生理特性的影响[J].江苏农业科学,2013,41(07):362.
 Yu Lilin,et al.Effects of drought stress and rewatering on physiological characteristics of several herbaceous plants with ecological restoration function[J].Jiangsu Agricultural Sciences,2013,41(9):362.
[5]岳莉然,孙妙婷.紫叶酢浆草光合特性及耐旱性研究[J].江苏农业科学,2013,41(08):169.
 Yue Liran,et al.Study on photosynthetic characteristics and drought tolerance of Oxalis triangularis cv. purpurea[J].Jiangsu Agricultural Sciences,2013,41(9):169.
[6]李鹏,刘济明,颜强,等.干旱胁迫对小蓬竹繁殖和某些生理特性的影响[J].江苏农业科学,2014,42(08):181.
 Li Peng,et al.Effects of drought stress on reproduction and some physiological characteristics of Drepanostachyum luodianense[J].Jiangsu Agricultural Sciences,2014,42(9):181.
[7]程小毛,罗翠芹.不同土壤水分处理对香樟幼苗生理特性的影响[J].江苏农业科学,2013,41(09):171.
 Cheng Xiaomao,et al.Effects of different soil water treatments on physiological characteristics of Cinnamomum camphora seedlings[J].Jiangsu Agricultural Sciences,2013,41(9):171.
[8]杨阳,刘秉儒,贾倩民,等.赤霉素对干旱胁迫下沙冬青种子萌发的影响[J].江苏农业科学,2014,42(05):271.
 Yang Yang,et al.Effect of gibberellin on seed germination of Ammopiptanthus mongolicus under drought stress[J].Jiangsu Agricultural Sciences,2014,42(9):271.
[9]于惠琳,史振声,丛玲,等.干旱胁迫下甜高粱和粒用高粱光合及生理响应比较[J].江苏农业科学,2014,42(02):72.
 Yu Huilin,et al.Comparative photosynthetic and physiological response of sweet sorghum and grain sorghum under drought stress[J].Jiangsu Agricultural Sciences,2014,42(9):72.
[10]吴庆贵,杨敬天,邹利娟,等.珙桐幼苗生理生态特性对土壤干旱胁迫的响应[J].江苏农业科学,2014,42(02):119.
 Wu Qinggui,et al.Effects of drought stress on physiological and biochemical parameters of Davidia involucrata[J].Jiangsu Agricultural Sciences,2014,42(9):119.

备注/Memo

备注/Memo:
收稿日期:2021-07-19
基金项目:国家自然科学基金(编号:NSFC31328019);江苏省创新能力建设计划(编号:BM2015019-1)。
作者简介:汪毅(1974—),男,江苏南通人,硕士,实验师,研究方向为观赏植物抗逆性及景观应用。E-mail:1193804491@qq.com。
通信作者:刘建秀,博士,研究员,研究方向为草坪草遗传育种与繁育利用。E-mail:turfunit@aliyun.com。
更新日期/Last Update: 2022-05-05