|本期目录/Table of Contents|

[1]马蕊,林勇,马婷婷.丛枝菌根真菌对六堡茶茶叶品质及其相关基因表达的影响[J].江苏农业科学,2022,50(17):157-163.
 Ma Rui,et al.Influences of arbuscular mycorrhizal fungi on quality and related gene expression of Liubao tea[J].Jiangsu Agricultural Sciences,2022,50(17):157-163.
点击复制

丛枝菌根真菌对六堡茶茶叶品质及其相关基因表达的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第17期
页码:
157-163
栏目:
园艺与林学
出版日期:
2022-09-05

文章信息/Info

Title:
Influences of arbuscular mycorrhizal fungi on quality and related gene expression of Liubao tea
作者:
马蕊1林勇2马婷婷1
1.广西职业技术学院,广西南宁 530226; 2.湖南农业大学园艺园林学院,湖南长沙 410128
Author(s):
Ma Ruiet al
关键词:
丛枝菌根真菌六堡茶次生代谢物茶多酚儿茶素基因表达水平
Keywords:
-
分类号:
S571.101;S182
DOI:
-
文献标志码:
A
摘要:
采用盆栽试验,设置接种根内根孢囊霉(Rhizophagus intraradices,RI)、摩西斗管囊霉(Funneliformis mosseae,FM)、浅窝无梗囊霉(Acaulospora lacunosa,AL)及3种丛枝菌根真菌(AMF)混合接种处理(MX),以不接种为对照(CK),探索AMF对六堡茶化学组分及其相关品质参数的影响,以期为今后将菌根技术应用于茶树栽培提供参考。结果表明,接种AMF处理的侵染率为22.74%~51.33%,接种AMF整体提高了茶树株高、叶面积及生物量累积,其效果表现为CK<接种AL<接种MX<接种FM<接种RI。接种AMF均显著提高了茶叶养分(N、P、K、Ca、Mg、Mn、Fe、Cu、Zn)含量及相关品质参数(多糖、总可溶性蛋白、茶多酚、儿茶素、总黄酮、咖啡碱含量),其中FM、RI处理的养分含量及品质皆显著优于其他处理,且多AMF混合处理没有表现出叠加效应,表明不同AMF物种之间存在相互干扰作用。此外,酶基因中的CsAPX、CsTCS1、CsPAL、CsC4H、CsF3H、CsDFR与其对应的品质参数表现出相同趋势,表明AMF可以通过上调相关基因的表达来促进次生代谢物的合成,从而影响茶叶品质。特别要注意的是,氨基酸含量与CsGDH、CsGS和CsGOGAT表达量无明显相关,其含量的增加是菌丝中氨基酸转移的结果。综上,接种AMF可促进茶树生长发育和对养分含量的吸收,并通过上调相关基因表达来促进品质形成,但是不同AMF种类间存在互相干扰作用,以单独接种根内根孢囊霉(Rhizophagus intraradices)的效果最佳。
Abstract:
-

参考文献/References:

[1]江燕,黎星辉,浦滇,等. 基于茎材解剖结构的茶树树龄测定方法[J]. 茶叶科学,2020,40(4):492-500.
[2]曹本福,姜海霞,刘丽,等. 丛枝菌根菌丝网络在植物互作中的作用机制研究进展[J]. 应用生态学报,2021,32(9):3385-3396.
[3]曹本福,姜海霞,陆引罡,等. 烟草与丛枝菌根真菌的共生效应研究进展[J]. 中国土壤与肥料,2021,58(1):327-338.
[4]刘辉,陈梦,黄引娣,等. 安徽茶区茶树丛枝菌根真菌多样性[J]. 应用生态学报,2017,28(9):2897-2906.
[5]夏庭君,吴强盛,邵雅东,等. 丛枝菌根真菌对福鼎大白茶生长、侧根数和根系内源激素的影响[J]. 广西植物,2018,38(12):1635-1640.
[6]柳洁,肖斌,王丽霞,等. 盐胁迫下丛枝菌根(AM)对茶树生长及茶叶品质的影响[J]. 茶叶科学,2013,33(2):140-146.
[7]Singh S,Pandey A,Kumar B,et al. Enhancement in growth and quality parameters of tea[Camellia sinensis (L.) O. Kuntze]through inoculation with arbuscular mycorrhizal fungi in an acid soil[J]. Biology and Fertility of Soils,2010,46(5):427-433.
[8]赵青华,孙立涛,王玉,等. 丛枝菌根真菌和施氮量对茶树生长、矿质元素吸收与茶叶品质的影响[J]. 植物生理学报,2014,50(2):164-170.
[9]Wang K B,Ruan J Y. Analysis of chemical components in green tea in relation with perceived quality,a case study with Longjing teas[J]. International Journal of Food Science and Technology,2010,44(12):2476-2484.
[10]Phillips J M. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection[J]. Transactions of the British Mycological Society,1970,55(1):158-161.
[11]傅博强,谢明勇,聂少平,等. 茶叶中多糖含量的测定[J]. 食品科学,2001(11):69-73.
[12]汪家政,范明. 蛋白质技术手册[M]. 北京:科学出版社,2000:42-47.
[13]王英,张玉刚,戴洪义. 超声波法提取苹果果实中类黄酮最佳条件研究[J]. 食品研究与开发,2012,33(2):24-27.
[14]涂云飞. 茚三酮法测定茶叶游离氨基酸总量研究[J]. 现代农业科技,2018(14):235-238.
[15]Duan Y,Zhu X J,Shen J Z,et al. Genome-wide identification,characterization and expression analysis of the amino acid permease gene family in tea plants (Camellia sinensis)[J]. Genomics,2020,112(4):2866-2874.
[16]Kato M,Misako K,Crozier A,et al. Caffeine synthase gene from tea leaves[J]. Nature,2000,406:956-957.
[17]Xiong L G,Li J,Li Y H,et al. Dynamic changes in catechin levels and catechin biosynthesis-related gene expression in albino tea plants (Camellia sinensis L.)[J]. Plant Physiology and Biochemistry,2013,71:132-143.
[18]Fajardo L,Cáceres A,Arrindell P. Arbuscular mycorrhizae,a tool to enhance the recovery and re-introduction of Juglans venezuelensis Manning,an endemic tree on the brink of extinction[J]. Symbiosis,2014,64(2):63-71.
[19]Zou Y N,Srivastava A K,Ni Q D,et al. Disruption of mycorrhizal extraradical mycelium and changes in leaf water status and soil aggregate stability in rootbox-grown trifoliate orange[J]. Frontiers in Microbiology,2015,6:203.
[20]Krishnan A,Sharavanan P S. Effects of CdCl2 and arbuscular mycorrhizal fungi (AMF) on the growth and nutrient content of black gram (Vigna mungo L.)[J]. International Journal of Plant Sciences,2016,11(2):282-287.
[21]Upreti K K,Bhatt R M,Panneerselvam P,et al. Morpho-physiological responses of grape rootstock ‘Dogridge’ to arbuscular mycorrhizal fungi inoculation under salinity stress[J]. International Journal of Fruit Science,2016,16:191-209.
[22]Tchameni S N,Nwaga D,Wakam L N,et al. Growth enhancement,amino acid synthesis and reduction in susceptibility towards Phytophthora megakarya by arbuscular mycorrhizal fungi inoculation in cocoa plants[J]. Journal of Phytopathology,2012,160(5):220-228.
[23]Sanmartín C,Garmendia I,Romano B,et al. Mycorrhizal inoculation affected growth,mineral composition,proteins and sugars in lettuces biofortified with organic or inorganic selenocompounds[J]. Scientia Horticulturae,2014,180:40-51.
[24]谢伟,郝志鹏,郭兰萍,等. 丛枝菌根影响植物萜类化合物合成与积累研究进展[J]. 生物技术通报,2020,36(9):49-63.
[25]Zubek S,Rola K,Szewczyk A,et al. Enhanced concentrations of elements and secondary metabolites in Viola tricolor L. induced by arbuscular mycorrhizal fungi[J]. Plant and Soil,2015,390(1):129-142.
[26]Cao J L,Shao Y D,Zou Y N,et al. Inoculation with Clariodeoglomus etunicatum improves leaf food quality of tea exposed to P stress[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca,2021,49(1):12166.
[27]Johansen A,Finlay R D,Olsson P A. Nitrogen metabolism of external hyphae of the arbuscular mycorrhizal fungus Glomus intraradices[J]. New Phytologist,1996,133(4):705-712.

相似文献/References:

[1]李少朋,毕银丽,彭星.接种丛枝菌根真菌对矿井水回灌玉米生长的影响[J].江苏农业科学,2016,44(05):112.
 Li Shaopeng,et al.Effects of inoculation with AMF on growth of maize after recharging with mining water[J].Jiangsu Agricultural Sciences,2016,44(17):112.
[2]王丽丽,杨谦.接种枯草芽孢杆菌和丛枝菌根真菌促进红三叶修复石油污染土壤[J].江苏农业科学,2016,44(05):526.
 Wang Lili,et al.Effect of inoculation with plant growth-promoting rhizobacteria (PGPR) of bacillus subtilis and arbuscular mycorrhizal fungi of Glomus geosporum on phytoremediation of Trifolium pratense to petroleum contaminated soil[J].Jiangsu Agricultural Sciences,2016,44(17):526.
[3]任禛,韩丽,张永福,等.不同丛枝菌根真菌对玉米生长生理的影响[J].江苏农业科学,2015,43(05):63.
 Ren Zhen,et al.Effect of different arbuscular mycorrhizal fungi on growth and physiology of maize[J].Jiangsu Agricultural Sciences,2015,43(17):63.
[4]赵飞,蔡晓布.不同海拔高度对藏北高寒草甸丛枝菌根真菌的影响[J].江苏农业科学,2015,43(04):344.
 Zhao fei,et al.Effect of different altitudes on arbuscular mycorrhizal fungi in northern Tibetan alpine meadow[J].Jiangsu Agricultural Sciences,2015,43(17):344.
[5]杜俊卿.接种丛枝菌根真菌对不同绿化植物根际微环境的影响[J].江苏农业科学,2017,45(18):149.
 Du Junqing.Effects of inoculating arbuscular mycorrhizal fungi on rhizosphere microenvironment of different greening plants[J].Jiangsu Agricultural Sciences,2017,45(17):149.
[6]王娜,陈飞,岳英男,等.松嫩盐碱草地2种优势丛枝菌根真菌对紫花苜蓿耐盐性的影响[J].江苏农业科学,2017,45(24):146.
 Wang Na,et al.Effects of two dominant AM fungi on salt tolerance of Medicago sativa in Songnen saline-alkaline grassland[J].Jiangsu Agricultural Sciences,2017,45(17):146.
[7]刘雪琴,韩锰,仝瑞建.纳米ZnO胁迫下丛枝菌根真菌根外菌丝对玉米生长及锌吸收的影响[J].江苏农业科学,2018,46(02):46.
 Liu Xueqin,et al.Effects of arbuscular mycorrhizal mycelium on maize growth and Zn uptake under ZnO nanoparticles stress[J].Jiangsu Agricultural Sciences,2018,46(17):46.
[8]刘薇,吕光辉,魏雪峰,等.AM真菌多样性与植物多样性耦合关系及其对水盐梯度的响应[J].江苏农业科学,2018,46(09):252.
 Liu Wei,et al.Coupling relationship between arbuscular mycorrhiza fungi diversity and plant diversity and its response to soil water and salinity gradient[J].Jiangsu Agricultural Sciences,2018,46(17):252.
[9]周昱.不同丛枝菌根真菌对云杉生长及根腐病的影响[J].江苏农业科学,2018,46(14):102.
 Zhou Yu.Effects of different arbuscular mycorrhizal fungi on growth and root rot of Picea asperata[J].Jiangsu Agricultural Sciences,2018,46(17):102.
[10]崔美香,卢彦琦,祁芳,等.丛枝菌根真菌对小麦生长发育及根茎部病害发生的影响[J].江苏农业科学,2018,46(16):81.
 Cui Meixiang,et al.Effects of arbuscular mycorrhizal fungi on growth and occurrence of root and stem diseases of wheat[J].Jiangsu Agricultural Sciences,2018,46(17):81.

备注/Memo

备注/Memo:
收稿日期:2021-11-03
基金项目:2020年度广西高校中青年教师科研基础能力提升项目(编号:2020KY29020);2020年广西高等学校高水平创新团队及卓越学者计划[编号:桂教人才(2020)6号];茶叶产业化发展科技创新团队项目。
作者简介:马蕊(1987—),女,黑龙江黑河人,硕士,副教授,研究方向为生产茶叶加工及植物功能成分化学。E-mail:malaoshi785@163.com。
更新日期/Last Update: 2022-09-05