|本期目录/Table of Contents|

[1]王亚妮,申晓晨.丛枝菌根真菌与赤霉素对盐胁迫下番茄生长及生理生化的影响[J].江苏农业科学,2022,50(20):174-182.
 Wang Yani,et al.Effects of arbuscular mycorrhizal fungi and gibberellin on growth and physiology and biochemistry of tomato under salt stress[J].Jiangsu Agricultural Sciences,2022,50(20):174-182.
点击复制

丛枝菌根真菌与赤霉素对盐胁迫下番茄生长及生理生化的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第20期
页码:
174-182
栏目:
园艺与林学
出版日期:
2022-10-20

文章信息/Info

Title:
Effects of arbuscular mycorrhizal fungi and gibberellin on growth and physiology and biochemistry of tomato under salt stress
作者:
王亚妮1申晓晨2
1.山西运城农业职业技术学院,山西运城 044000; 2.山西省运城市农业农村局,山西运城 044000
Author(s):
Wang Yaniet al
关键词:
丛枝菌根真菌盐胁迫赤霉素生长发育植物激素
Keywords:
-
分类号:
S641.201
DOI:
-
文献标志码:
A
摘要:
施用植物激素、丛枝菌根(arbuscular mycorrhizal,简称AM)真菌在缓解植物非生物胁迫方面的作用已被广泛报道,然而盐胁迫环境中二者结合施用对植物生长发育的影响知之甚少。采用盆栽试验,以中杂9号为试验材料,探索盐胁迫下赤霉素、丛枝菌根真菌幼套近明球囊霉(Claroideoglomus etunicatum)对番茄生长发育、离子渗透及内源激素(GAs、IAA、ABA、JA、SA、CTK、ACC)的影响。结果表明,盐胁迫能显著降低番茄生物量、叶面积、SPAD值等生长发育指标,破坏细胞渗透性及扰乱主要植物激素的分泌水平。单接种AM真菌或单施赤霉素皆可在一定程度上改善盐渍土壤中植株的生长发育及生理代谢,但效果不明显,当二者结合处理时上述指标皆具有最佳值。此外,赤霉素降低了AM真菌的根系定殖,表明外源赤霉素与AM真菌为非互相促进关系。相关分析进一步表明,接种AM真菌处理的植株生长参数与K含量、K含量/Na含量、Na含量整体呈显著或极显著相关;外源施用赤霉素植株生长参数主要与GAs、IAA及CTK含量呈明显正相关。综上,AM真菌、外源赤霉素皆可有效改善盐胁迫番茄的生长发育及生理代谢,但二者的调节机制不同。AM真菌主要调节K-Na泵以维持细胞渗透压从而维持宿主正常生长,外用赤霉素则主要诱导特定植物激素(GAs、IAA、CTK)分泌从而促进植株的生长发育,二者表现为互补关系,因此二者结合施用时效果最佳。
Abstract:
-

参考文献/References:

[1]张涛,刘勇鹏,韩娅楠,等. 100份辣椒种质资源的耐盐综合评价及耐盐品种筛选[J]. 山东农业科学,2020,52(5):7-15.
[2]王凯,孙星星,秦光蔚,等. 我国土壤改良修复工程技术研究进展[J]. 江苏农业科学,2021,49(20):40-48.
[3]杨劲松,姚荣江,王相平,等. 中国盐渍土研究:历程、现状与展望[J]. 土壤学报,2022,59(1):10-27.
[4]焦德志,赵泽龙. 盐碱胁迫对植物形态和生理生化影响及植物响应的研究进展[J]. 江苏农业科学,2019,47(20):1-4.
[5]曹本福,姜海霞,陆引罡,等. 烟草与丛枝菌根真菌的共生效应研究进展[J]. 中国土壤与肥料,2021(1):327-338.
[6]张爱娣,郑仰雄,黄东兵.丛枝菌根真菌对大叶女贞耐盐性的影响[J]. 江苏农业科学,2018,46(19):129-133.
[7]韩冰,郭世荣,贺超兴,等. 丛枝菌根真菌对盐胁迫下黄瓜植株生长、果实产量和品质的影响[J]. 应用生态学报,2012,23(1):154-158.
[8]高秀华,傅向东. 赤霉素信号转导及其调控植物生长发育的研究进展[J]. 生物技术通报,2018,34(7):1-13.
[9]李武琴,曾乙心,陈光勇,等. 外源激素对盐胁迫下烟草幼苗生理抗性的影响[J]. 山东农业科学,2018,50(9):36-39.
[10]Hamayun M,Khan S A,Khan A L,et al. Exogenous gibberellic acid reprograms soybean to higher growth and salt stress tolerance[J]. Journal of Agricultural and Food Chemistry,2010,58(12):7226-7232.
[11]薛志忠,吴新海. 赤霉素对盐胁迫下番茄种子萌发特性的影响[J]. 北方园艺,2011,35(15):59-61.
[12]Eliwa A. The effect of the exogenous gibberellic acid on two salt stressed barley cultivars[J]. European Scientific Journal,2014,10:228-245.
[13]赵二劳,闫唯,郝丽琴,等. 番茄红素提取技术及其功能活性研究进展[J]. 食品研究与开发,2017,38(8):188-192.
[14]Phillips J M,Hayman D S.Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection[J]. Transactions of the British Mycological Society,1970,55(1):158-IN18.
[15]鲍士旦. 土壤农化分析[M]. 3版.北京:中国农业出版社,2000.
[16]Albacete A,Ghanem M E,Martínez-Andújar C,et al. Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants[J]. Journal of Experimental Botany,2008,59(15):4119-4131.
[17]曹本福,姜海霞,刘丽,等. 丛枝菌根菌丝网络在植物互作中的作用机制研究进展[J]. 应用生态学报,2021,32(9):3385-3396.
[18]Floss D S,Levy J G,Lévesque-Tremblay V,et al. DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis[J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110(51):E5025-E5034.
[19]闫道良,郭予琦. NaCl处理对海滨锦葵N、P和Na+、K+含量及其化学计量特征的影响[J]. 核农学报,2015,29(6):1211-1217.
[20]Khalloufi M,Martínez-Andújar C,Lachal M,et al. The interaction between foliar GA3 application and arbuscular mycorrhizal fungi inoculation improves growth in salinized tomato (Solanum lycopersicum L.) plants by modifying the hormonal balance[J]. Journal of Plant Physiology,2017,214:134-144.
[21]Hajiboland R,Aliasgharzadeh N,Laiegh S F,et al. Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants[J]. Plant and Soil,2010,331(1/2):313-327.
[22]Martín-Rodríguez J ,Ocampo J A,Molinero-Rosales N,et al. Role of gibberellins during arbuscular mycorrhizal formation in tomato:new insights revealed by endogenous quantification and genetic analysis of their metabolism in mycorrhizal roots[J]. Physiologia Plantarum,2015,154(1):66-81.
[23]Kumar V,Irfan M,Ghosh S,et al. Fruit ripening mutants reveal cell metabolism and redox state during ripening[J]. Protoplasma,2016,253(2):581-594.
[24]Fujisawa M,Shima Y,Higuchi N,et al. Direct targets of the tomato-ripening regulator RIN identified by transcriptome and chromatin immunoprecipitation analyses[J]. Planta,2012,235(6):1107-1122.
[25]Hause B,Mrosk C,Isayenkov S,et al. Jasmonates in arbuscular mycorrhizal interactions[J]. Phytochemistry,2007,68(1):101-110.
[26]Miransari M,Abrishamchi A,Khoshbakht K,et al. Plant hormones as signals in arbuscular mycorrhizal symbiosis[J]. Critical Reviews in Biotechnology,2014,34(2):123-133.
[27]Weiss D,Ori N. Mechanisms of cross talk between gibberellin and other hormones[J]. Plant Physiology,2007,144(3):1240-1246.
[28]Ludwig-Müller J. Auxin conjugates:their role for plant development and in the evolution of land plants[J]. Journal of Experimental Botany,2011,62(6):1757-1773.
[29]Wasternack C,Hause B. Jasmonates:biosynthesis,perception,signal transduction and action in plant stress response,growth and development[J]. Annals of. Botany,2013,111(6):1021-1058.
[30]Song S,Qi T,Wasternack C,et al. Jasmonate signaling and crosstalk with gibberellin and ethylene[J]. Current Opinion in Plant Biology,2014,21:112-119.

相似文献/References:

[1]刘骥,王燕,郭建华,等.盐胁迫诱导的TabZIP60转录因子的筛选与分析[J].江苏农业科学,2013,41(08):18.
 Liu Ji,et al.Screening and analysis of TabZIP60 transcription factor induced by salt stress[J].Jiangsu Agricultural Sciences,2013,41(20):18.
[2]冯蕾,刘国荣,侯晓杰,等.NaCl胁迫对枳椇和皂荚生长及渗透调节物质的影响[J].江苏农业科学,2014,42(12):230.
 Feng Lei,et al.Effects of NaCl stress on growth and osmotic regulation of Hovenia dulcia and Gleditsia sinensis[J].Jiangsu Agricultural Sciences,2014,42(20):230.
[3]陈阳春,张本厚,贾明良,等.盐胁迫对半夏组培苗生长及生理指标的影响[J].江苏农业科学,2014,42(12):62.
 Chen Yangchun,et al.Effects of salt stress on growth and physiological indices of tissue culture seedlings of Pinellia ternata (Thunb.) Breit.[J].Jiangsu Agricultural Sciences,2014,42(20):62.
[4]王鑫,孔祥生.盐胁迫对流苏树愈伤组织生理生化特性的影响[J].江苏农业科学,2014,42(11):54.
 Wang Xin,et al().Effect of salt stress on physio-biochemical indices of Chionanthus retusus callus[J].Jiangsu Agricultural Sciences,2014,42(20):54.
[5]吕艳伟,何文慧,陈雨鸥,等.盐胁迫对小麦幼苗光合色素含量和细胞膜的影响[J].江苏农业科学,2013,41(06):74.
 Lü Yanwei,et al.Effects of salt stress on photosynthetic chlorophyll content and cell membrane in wheat[J].Jiangsu Agricultural Sciences,2013,41(20):74.
[6]包奇军,柳小宁,张华瑜,等.NaCl与NaHCO3+Na2CO3对不同基因型啤酒大麦萌发期胁迫效应的比较[J].江苏农业科学,2014,42(10):92.
 Bao Qijun,et al.Comparison of stress effects of NaCl and NaHCO3+Na2CO3 on different genotypes of malting barley seeds during germination stage[J].Jiangsu Agricultural Sciences,2014,42(20):92.
[7]谷文英,牟莹莹,钱泽,等.外源甜菜碱对盐胁迫下菊苣幼苗线粒体膜氧化损伤的缓解作用[J].江苏农业科学,2013,41(07):198.
 Gu Wenying,et al.Mitigative effect of exogenous glycine betaine on mitochondrial membrane oxidative damage of chicory seedling under salt stress[J].Jiangsu Agricultural Sciences,2013,41(20):198.
[8]杨永恒,黄苏珍.NaCl胁迫下甜菊不同耐盐性单株的生长及生理响应[J].江苏农业科学,2013,41(08):87.
 Yang Yongheng,et al.Growth and physiological response of Stevia rebaudiana Bertoni plants with different salt tolerance under salt stress[J].Jiangsu Agricultural Sciences,2013,41(20):87.
[9]乔海龙,陈和,陈健,等.盐胁迫对不同大麦品种产量及品质的影响[J].江苏农业科学,2014,42(09):83.
 Qiao Hailong,et al.Effects of salt stress on yield and quality of different barley varieties[J].Jiangsu Agricultural Sciences,2014,42(20):83.
[10]陈罡,管安琴,卢昱宇,等.盐胁迫对不同基因型芦笋萌发的影响及盐碱地育苗技术[J].江苏农业科学,2014,42(08):136.
 Chen Gang,et al.Effect of salt stress on germination of different genotypes of asparagus and seedling-raising techniques of asparagus on saline-alkali soil[J].Jiangsu Agricultural Sciences,2014,42(20):136.
[11]张爱娣,郑仰雄,黄东兵.丛枝菌根真菌对大叶女贞耐盐性的影响[J].江苏农业科学,2018,46(19):129.
 Zhang Aidi,et al.Effects of arbuscular mycorrhizal fungi on salt tolerance of Ligustrum lucidum[J].Jiangsu Agricultural Sciences,2018,46(20):129.
[12]陈盖,温可馨,司冰.盐胁迫下园林植物彩叶树响应菌根共生的比较转录组分析[J].江苏农业科学,2022,50(22):19.
 Chen Gai,et al.Transcriptome analysis of garden plant coleus in response to mycorrhizal symbiosis under salt stress[J].Jiangsu Agricultural Sciences,2022,50(20):19.
[13]郭娜,张玥,刘贤雍,等.丛枝菌根真菌提高植物耐盐性生理机制研究进展[J].江苏农业科学,2023,51(4):16.
 Guo Na,et al.Research progress on physiological mechanism of arbuscular mycorrhizal fungi improve plant salt tolerance[J].Jiangsu Agricultural Sciences,2023,51(20):16.
[14]徐宁,吴亮,朱建俊.外源独脚金内酯和丛枝菌根真菌对多枝柽柳抗盐性的影响[J].江苏农业科学,2024,52(6):150.
 Xu Ning,et al.Effects of exogenous strigolactones and arbuscular mycorrhizal fungi on salt tolerance of Tamarix ramosissima[J].Jiangsu Agricultural Sciences,2024,52(20):150.

备注/Memo

备注/Memo:
收稿日期:2021-11-24
基金项目:山西运城农业职业技术学院课题(编号:2021AB018)。
作者简介:王亚妮(1986—),女,山西芮城人,硕士,讲师,从事植物生理生化研究。 E-mail:416867972@qq.com。
更新日期/Last Update: 2022-10-20