|本期目录/Table of Contents|

[1]陈璨,余宁静,单新宇,等.小麦赤霉病病情指数与毒素积累量关系探究及全基因组关联分析[J].江苏农业科学,2022,50(22):107-114.
 Chen Can,et al.Study on relationship between disease index and toxin accumulation of wheat scab and genome-wide association analysis[J].Jiangsu Agricultural Sciences,2022,50(22):107-114.
点击复制

小麦赤霉病病情指数与毒素积累量关系探究及全基因组关联分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第22期
页码:
107-114
栏目:
植物保护
出版日期:
2022-11-20

文章信息/Info

Title:
Study on relationship between disease index and toxin accumulation of wheat scab and genome-wide association analysis
作者:
陈璨余宁静单新宇卢杰张海萍司红起马传喜
安徽农业大学农学院/农业部黄淮南部小麦生物学与遗传育种重点实验室,安徽合肥 230036
Author(s):
Chen Canet al
关键词:
小麦赤霉病病情指数毒素积累全基因组关联分析
Keywords:
-
分类号:
S435.121.4+5
DOI:
-
文献标志码:
A
摘要:
小麦赤霉病是全球性的真菌病害,已严重威胁我国的粮食安全。为探明小麦赤霉病抗侵染与抗毒素积累之间的关系,挖掘调控小麦赤霉病抗性相关性状的重要位点。采用91份小麦品种(系)构建的自然群体为材料,种植于自然鉴定圃中,对2020年、2021年2年的田间病情指数进行调查,用超高效液相色谱测定脱氧雪腐镰刀菌烯醇(DON)、雪腐镰刀菌烯醇(NIV)含量。对2种抗性指标进行相关性分析。结果表明,赤霉病病情指数与毒素积累量之间具有一定的相关性,又有各自的遗传特征。利用小麦90K SNP芯片,结合MLM+K+Q混合线性模型进行全基因组关联分析,共关联到128个显著单核苷酸多态性(SNP)标记(P≤0001),分布在除1D、4D外的19条染色体上,其中2个及2个以上环境中被检测到的稳定位点有11个。仅与毒素稳定关联的位点有6个,分别位于1A、4A、6A、6B、6D染色体上,可解释11.96%~30.50%的表型变异。与毒素和病情指数都稳定关联的位点有4个,分别位于2A、2B、4B、5D染色体上,可解释12.21%~34.11%的表型变异。基于中国春参考基因组信息,通过对应区段的基因注释,筛选得到15个与小麦赤霉病抗性相关的候选基因。
Abstract:
-

参考文献/References:

[1]Jiang D F,Chen J D,Li F H,et al. Deoxynivalenol and its acetyl derivatives in bread and biscuits in Shandong Province of China[J]. Food Additives & Contaminants:Part B,2018,11(1):43-48.
[2]Schroeder H W,Christensen J J. Factors affecting resistance of wheat to scab caused by Gibberella zeae[J]. Phytopathology,1963,53:831-838.
[3]Mesterhazy A. Types and components of resistance to Fusarium head blight of wheat[J]. Plant Breeding,1995,114(5):377-386.
[4]咸莉梅,胡怡,李磊,等. 浅议小麦赤霉病抗性类型与鉴定方法的对应性[J]. 生物技术进展,2021,11(5):554-559.
[5]翟俊鹏,李海霞,毕惠惠,等. 普通小麦主要农艺性状的全基因组关联分析[J]. 作物学报,2019,45(10):1488-1502.
[6]Ma Z Q,Xie Q,Li G Q,et al. Germplasms,genetics and genomics for better control of disastrous wheat Fusarium head blight[J]. Theoretical and Applied Genetics,2020,133(5):1541-1568.
[7]王洋,孙连发. 小麦赤霉病主要抗源抗赤霉病基因分子标记及其应用研究进展[J]. 黑龙江农业科学,2008(5):14-18.
[8]Arruda M P,Brown P,Brown-Guedira G,et al. Genome-wide association mapping of Fusarium head blight resistance in wheat using genotyping-by-sequencing[J]. The Plant Genome,2016,9(1):10.3835/plantgenome2015.04.0028.
[9]Wang R,Chen J L,Anderson J A,et al. Genome-wide association mapping of Fusarium head blight resistance in spring wheat lines [JP4]developed in the Pacific northwest and CIMMYT[J]. Phytopathology,2017,107(12):1486-1495.
[10]朱展望. 利用全基因组连锁分析和关联分析定位小麦赤霉病抗性基因及分子标记开发[D]. 北京:中国农业科学院,2020.
[11]Foroud N A. Investigating the molecular mechanisms of Fusarium head blight resistance in wheat[J]. University of British Columbia,2011.
[12]李长成. 小麦赤霉病籽粒抗性评价体系的建立[D]. 扬州:扬州大学,2018.
[13]中华人民共和国农业部. 小麦赤霉病测报技术规范:GB/T 15796—2011[S]. 北京:中国标准出版社,2011.
[14]Evanno G,Regnaut S,Goudet J.Detecting the number of clusters of individuals using the software structure:a simulation study[J]. Molecular Ecology,2005,14(8):2611-2620.
[15]He X Y,Dreisigacker S,Singh R P,et al. Genetics for low correlation between Fusarium head blight disease and deoxynivalenol (DON) content in a bread wheat mapping population[J]. Theoretical and Applied Genetics,2019,132(8):2401-2411.
[16]徐飞,杨共强,宋玉立,等. 不同小麦品种(系)对赤霉病的抗性和麦穗组织中DON毒素积累分析[J]. 植物病理学报,2014,44(6):651-657.
[17]陈怀谷,蔡志祥,陈飞,等. 不同小麦品种抗赤霉病性类型和抗毒素积累能力分析[J]. 植物保护学报,2007,34(1):32-36.
[18]巩性涛,王培,宋永泉,等. 小麦中呕吐毒素的分布规律及加工影响[J]. 粮食加工,2020,45(1):27-29.
[19]Zhao Y J,Guan X L,Zong Y,et al. Deoxynivalenol in wheat from the Northwestern region in China[J]. Food Additives & Contaminants.Part B,Surveillance,2018,11(4):281-285.
[20]Del Ponte E M,Fernandes J M C,Bergstrom G C. Influence of growth stage on Fusarium head blight and deoxynivalenol production in wheat[J]. Journal of Phytopathology,2007,155(10):577-581.
[21]Semagn K,Skinnes H,Bjrnstad ,et al. Quantitative trait loci controlling Fusarium head blight resistance and low deoxynivalenol content in hexaploid wheat population from ‘Arina’ and NK93604[J]. Crop Science,2007,47(1):294-303.
[22]郑 彤. 小麦赤霉病抗扩展性(Type Ⅱ)和抗毒素积累(Type Ⅲ)QTL元分析及全基因组关联分析[D]. 扬州:扬州大学,2020.
[23]Hayes J D,Pulford D J. The glut athione S-transferase supergene family:regulation of GST and the contribution of the lsoenzymes to cancer chemoprotection and drug resistance part I[J]. Critical Reviews in Biochemistry and Molecular Biology,1995,30(6):445-520.
[24]葛文扬,孙思龙,王宏伟,等. 天然“转基因”使小麦获得赤霉病抗性[J]. 自然杂志,2020,42(4):340-346.
[25]He Y,Ahmad D,Zhang X,et al. Genome-wide analysis of family-1 UDP glycosyltransferases (UGT) and identification of UGT genes for FHB resistance in wheat (Triticum aestivum L.)[J]. BMC Plant Biology,2018,18(1):67.
[26]Zhao L F,Ma X,Su P S,et al. Cloning and characterization of a specific UDP-glycosyltransferase gene induced by DON and Fusarium graminearum[J]. Plant Cell Reports,2018,37(4):641-652.
[27]Li X,Michlmayr H,Schweiger W,et al. A barley UDP-glucosyltransferase inactivates nivalenol and provides Fusarium head blight resistance in transgenic wheat[J]. Journal of Experimental Botany,2017,68(9):2187-2197.
[28]Qi P F,Balcerzak M,Rocheleau H,et al. Jasmonic acid and abscisic acid play important roles in host pathogen interaction between Fusarium graminearum and wheat during the early stages of fusarium head blight[J]. Physiological and Molecular Plant Pathology,2016,93:39-48.
[29]Thapa G,Gunupuru L R,Hehir J G,et al. A pathogen-responsive leucine rich receptor like kinase contributes to Fusarium resistance in cereals[J]. Frontiers in Plant Science,2018,9:867.
[30]Makandar R,Essig J S,Schapaugh M A,et al. Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1[J]. Molecular Plant-Microbe Interactions,2006,19(2):123-129.
[31]Mackintosh C A,Lewis J,Radmer L E,et al. Over expression of defense response genes in transgenic wheat enhances resistance to Fusarium head blight[J]. Plant Cell Reports,2007,26(4):479-488.
[32]Walter S,Nicholson P,Doohan F M. Action and reaction of host and pathogen during Fusarium head blight disease[J]. The New Phytologist,2010,185(1):54-66.

相似文献/References:

[1]何震天,张容,王建华,等.小麦扬辐麦4号高产表现及配套栽培技术[J].江苏农业科学,2013,41(04):69.
[2]缪建国,于莎,李锦霞,等.小麦扬辐麦4号特征特性及超高产栽培技术[J].江苏农业科学,2013,41(04):75.
[3]孙苏阳,李海军,王永军,等.高产广适多抗小麦主推品种淮麦25的特征特性及 高产栽培技术[J].江苏农业科学,2013,41(04):93.
[4]孙苏阳,李海军,王永军,等.高产小麦新品种淮麦32的选育及栽培技术[J].江苏农业科学,2013,41(05):83.
 Sun Suyang,et al.Breeding and cultivation techniques of a new wheat cultivar “Huaimai No.32”[J].Jiangsu Agricultural Sciences,2013,41(22):83.
[5]刘亚柏.有机水稻—红花草轮作对有机稻产量及土壤肥力的影响[J].江苏农业科学,2014,42(12):72.
 Liu Yabo,et al.Effects of organic rice-clover rotation on yield and soil fertility of organic rice[J].Jiangsu Agricultural Sciences,2014,42(22):72.
[6]杜菲,郑慧,李宏军.以还原糖含量为指标的膨化小麦辅料麦汁糖化工艺优化[J].江苏农业科学,2014,42(11):306.
 Du Fei,et al(0).Optimization of saccharification process of puffed wheat wort taking reducing sugar content as indicator[J].Jiangsu Agricultural Sciences,2014,42(22):306.
[7]徐艳,江建敏,国骏,等.黄瓜褐斑病菌菌丝蛋白对小麦种子萌发、生长及抗旱性的影响[J].江苏农业科学,2014,42(11):159.
 Xu Yan,et al(9).Effects of cucumber brown spot pathogen mycelium protein on seed germination,growth and drought resistance of wheat[J].Jiangsu Agricultural Sciences,2014,42(22):159.
[8]郑光耀,高丽萍,尹有干,等.冷杉针叶三萜酸在小麦生产上的应用[J].江苏农业科学,2014,42(11):98.
 Zheng Guangyao,et al(98).Application of triterpene acids from fir needles in wheat production[J].Jiangsu Agricultural Sciences,2014,42(22):98.
[9]姚国才,马鸿翔,张鹏,等.高产早熟抗赤霉病小麦宁麦21的选育与利用[J].江苏农业科学,2014,42(11):111.
 Yao Guocai,et al ().Breeding and utilization of wheat cultivar “Ningmai 21” with high yield and early maturing and resistance to gibberellic disease[J].Jiangsu Agricultural Sciences,2014,42(22):111.
[10]钱宏兵,朱德进,于倩倩.氮素营养水平对中筋小麦扬麦16产量和氮素吸收的影响[J].江苏农业科学,2013,41(06):71.
 Qian Hongbing,et al.Effects of nitrogen nutrition levels on yield and nitrogen uptake of medium gluten wheat cultivar “Yangmai 16”[J].Jiangsu Agricultural Sciences,2013,41(22):71.
[11]陈士强,陈秀兰,张容,等.小麦赤霉病抗性与株高的相关性研究[J].江苏农业科学,2015,43(12):144.
 Chen Shiqiang,et al.Study on correlation between wheat scab resistance and plant height[J].Jiangsu Agricultural Sciences,2015,43(22):144.
[12]王震,李金秀,张彬,等.赤霉病对江苏省北部小麦主栽品种品质的影响[J].江苏农业科学,2018,46(13):105.
 Wang Zhen,et al.Influences of fusarium head blight on quality of major wheat cultivars in northern Jiangsu[J].Jiangsu Agricultural Sciences,2018,46(22):105.
[13]陈文华,殷宪超,武德亮,等.小麦赤霉病生物防治研究进展[J].江苏农业科学,2020,48(04):12.
 Chen Wenhua,et al.Research progress on biological control of fusarium head blight[J].Jiangsu Agricultural Sciences,2020,48(22):12.
[14]王 显,杨大柳,王 安,等.播种量与施氮量对小麦产量及赤霉病发生的影响[J].江苏农业科学,2020,48(10):117.
 Wang Xian,et al.Effects of seeding rate and nitrogen application rate on wheat yield and scab[J].Jiangsu Agricultural Sciences,2020,48(22):117.
[15]吴迪,朱素芹,张语卉,等.HGGT基因与小麦赤霉病籽粒毒素积累的关系解析[J].江苏农业科学,2020,48(11):96.
 Wu Di,et al.Analysis of relationships among HGGT gene,fusarium head blight and deoxynivalenol accumulation in wheat grains[J].Jiangsu Agricultural Sciences,2020,48(22):96.
[16]胡中泽,衣政伟,王安,等.小麦抗赤霉病品种筛选[J].江苏农业科学,2020,48(15):118.
 Hu Zhongze,et al.Screening of wheat cultivars with resistance to fusarium head blight[J].Jiangsu Agricultural Sciences,2020,48(22):118.
[17]黄杰,王君,葛昌斌,等.黄淮南部小麦品种(系)的赤霉病抗性评价及抗源浅析[J].江苏农业科学,2020,48(17):113.
 Huang Jie,et al.Gibberellic disease resistance evaluation and resistance source analysis of wheat varieties(series) in southern Huanghuai[J].Jiangsu Agricultural Sciences,2020,48(22):113.
[18]吴海霞,谷莉莉,吴佳文,等.小麦赤霉病化学农药减量控害的技术途径[J].江苏农业科学,2021,49(11):76.
 Wu Haixia,et al.Technical approaches of reducing chemical pesticides to control Fusarium head blight[J].Jiangsu Agricultural Sciences,2021,49(22):76.
[19]廖森,方正武,张春梅,等.小麦抗赤霉病遗传与机理研究现状与展望[J].江苏农业科学,2021,49(19):51.
 Liao Sen,et al.Research current status and prospect of inheritance and mechanism of fusarium head blight resistance in wheat[J].Jiangsu Agricultural Sciences,2021,49(22):51.
[20]贾宝森,徐锐,熊泽浩,等.198份小麦种质资源赤霉病综合抗性鉴定及其FHB1抗性基因检测[J].江苏农业科学,2021,49(23):104.
 Jia Baosen,et al.Identification of comprehensive resistance of 198 wheat germplasm resources to fusarium head blight and detection of FHB1 resistance gene[J].Jiangsu Agricultural Sciences,2021,49(22):104.

备注/Memo

备注/Memo:
收稿日期:2021-12-23
基金项目:国家小麦产业技术体系建设专项(编号:CARS-03);国家重点研发计划(编号:2017YFD0100804);安徽高校协同创新项目(编号:GXXT-2019-033);江苏现代作物协同创新中心项目(编号:JCIC-MCP)。
作者简介:陈璨(1988—),女,安徽宿州人,博士,讲师,从事小麦遗传育种研究,E-mail:Chencan@ahau.edu.cn;共同第一作者:余宁静,女,安徽宣城人,硕士研究生,从事小麦抗赤霉病遗传研究,E-mail:853491380@qq.com。
通信作者:司红起,博士,教授,从事小麦分子育种研究,E-mail:sihq2002@163.com;马传喜,博士,教授,从事小麦遗传育种研究,E-mail:machuanxi@ahau.edu.cn。
更新日期/Last Update: 2022-11-20