|本期目录/Table of Contents|

[1]夏广英,高庚渠.镉污染土壤中生物炭对紫花苜蓿镉吸收、土壤性质及氮矿化的影响[J].江苏农业科学,2022,50(23):206-212.
 Xia Guangying,et al.Effects of biochar in cadmium-contaminated soil on cadmium uptake,soil properties and nitrogen mineralization of alfalfa[J].Jiangsu Agricultural Sciences,2022,50(23):206-212.
点击复制

镉污染土壤中生物炭对紫花苜蓿镉吸收、土壤性质及氮矿化的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第23期
页码:
206-212
栏目:
资源与环境
出版日期:
2022-12-05

文章信息/Info

Title:
Effects of biochar in cadmium-contaminated soil on cadmium uptake,soil properties and nitrogen mineralization of alfalfa
作者:
夏广英高庚渠
河南质量工程职业学院,河南平顶山 467000
Author(s):
Xia Guangyinget al
关键词:
生物炭紫花苜蓿镉吸收氮矿化基因表达
Keywords:
-
分类号:
X53
DOI:
-
文献标志码:
A
摘要:
添加生物炭或植物修复可有效修复土壤重金属污染,然而尚不确定植物修复下生物炭添加率在多大程度上影响着镉(Cd)修复效果。采用盆栽试验,设置对照(CK)、苜蓿种植(MX)、苜蓿种植+1%生物炭(MX+BC1)、苜蓿种植+2%生物炭(MX+BC2)、苜蓿种植+4%生物炭(MX+BC4),研究生物炭及苜蓿修复对Cd累积、土壤性质及相关氮矿化功能基因丰度的影响。结果表明,与MX处理相比,添加生物炭处理(MX+BC1、MX+BC2、MX+BC4)增加了紫花苜蓿生物量和植物Cd累积量,以MX+BC1处理最佳。与CK相比,苜蓿种植单一或与生物炭组施均可显著增加土壤有机质(SOM)含量,并对土壤阳离子交换性能产生显著影响。此外,MX处理提高了与土壤矿化相关的蛋白质酶、几丁质酶、氮矿化速率(Rm)及氮素转化相关的功能基因丰度,但对酶相关基因(nprA、aprA、chiA)表达影响较低。相关性分析表明,Rm与全氮含量、碱性蛋白酶、A-Cd、nprA、细菌功能基因(AOB-amoA)呈极显著相关;逐步回归分析表明,AOB-amoAnprA可预测氮矿化速率。综上所述,与CK相比,苜蓿种植单一或与生物炭一起使用可以通过降低Cd生物有效性和增加AOB-amoA、nprA、SOM含量及提高氮矿化来修复污染土壤。
Abstract:
-

参考文献/References:

[1]燕辉,王雪芹,代智光. 镉胁迫对大豆幼苗生理特性的影响[J]. 中国土壤与肥料,2021(6):269-275.
[2]李英,商建英,黄益宗,等. 镉砷复合污染土壤钝化材料研究进展[J]. 土壤学报,2021,58(4):837-850.
[3]王小燕,张柳青,杨艳. 植物修复重金属镉污染土壤的研究进展[J]. 环境保护与循环经济,2018,38(8):38-40.
[4]Agnello A C,Bagard M,van Hullebusch E D,et al. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation,phytoremediation,bioaugmentation and bioaugmentation-assisted phytoremediation[J]. Science of the Total Environment,2016,563/564:693-703.
[5]苏彩霞,董旭. 根际促生菌与生物炭制剂对辣椒生长发育及土壤改良效果的影响[J]. 山东农业科学,2021,53(12):109-117.
[6]李鸿博,钟怡,张昊楠,等. 生物炭修复重金属污染农田土壤的机制及应用研究进展[J]. 农业工程学报,2020,36(13):173-185.
[7]Banning N C,Grant C D,Jones D L,et al. Recovery of soil organic matter,organic matter turnover and nitrogen cycling in a post-mining forest rehabilitation chronosequence[J]. Soil Biology and Biochemistry,2008,40(8):2021-2031.
[8]吴仁杰,陈银萍,曹雯婕,等. 营养元素与螯合剂强化植物修复重金属污染土壤研究进展[J]. 中国土壤与肥料,2021(5):328-337.
[9]Jiang X J,Hou X Y,Zhou X,et al. pH regulates key players of nitrification in paddy soils[J]. Soil Biology and Biochemistry,2015,81:9-16.
[10]马龙,高伟,栾好安,等. 有机肥/秸秆替代化肥模式对设施菜田土壤氮循环功能基因丰度的影响[J]. 植物营养与肥料学报,2021,27(10):1767-1778.
[11]Geisseler D,Horwath W R. Regulation of extracellular protease activity in soil in response to different sources and concentrations of nitrogen and carbon[J]. Soil Biology and Biochemistry,2008,40(12):3040-3048.
[12]Zhang M Y,Wang W J,Wang J,et al. Dynamics of biochemical properties associated with soil nitrogen mineralization following nitrification inhibitor and fungicide applications[J]. Environmental Science and Pollution Research International,2017,24(12):11340-11348.
[13]Gianfreda L,Rao M A. Potential of extra cellular enzymes in remediation of polluted soils:a review[J]. Enzyme and Microbial Technology,2004,35(4):339-354.
[14]陈修晓,王翠红,李程明,等. 磷与镉对不同类型耕型红壤有机氮矿化的影响[J]. 湖南农业大学学报(自然科学版),2012,38(2):203-207.
[15]鲍士旦. 土壤农化分析[M]. 3版.北京:中国农业出版社,2000:83-91.
[16]王子龙,刘传兴,姜秋香,等. 气候变暖对冻结期黑土碳氮循环关键过程及指标的影响[J]. 环境科学,2021,42(4):1967-1978.
[17]Zhang M Y,Wang J,Bai S H,et al. Evaluating the effects of phytoremediation with biochar additions on soil nitrogen mineralization enzymes and fungi[J]. Environmental Science and Pollution Research,2018,25(23):23106-23116.
[18]Zhang M Y,Xu Z H,Teng Y,et al. Non-target effects of repeated chlorothalonil application on soil nitrogen cycling:the key functional gene study[J]. Science of the Total Environment,2016,543:636-643.
[19]高宇,程潜,张梦君,等. 镉污染土壤修复技术研究[J]. 生物技术通报,2017,33(10):103-110.
[20]高欣,邓芸,季蒙蒙,等. 氨基酸盐对镉污染土壤的淋洗效果[J]. 江苏农业学报,2020,36(2):366-372.
[21]Zhang M Y,Wang J,Bai S H,et al. Assisted phytoremediation of a co-contaminated soil with biochar amendment:Contaminant removals and bacterial community properties[J]. Geoderma,2019,348:115-123.
[22]Wang Y T,Ren W J,Li Y,et al. Nontargeted metabolomic analysis to unravel the impact of di (2-ethylhexyl) phthalate stress on root exudates of alfalfa (Medicago sativa)[J]. Science of the Total Environment,2019,646:212-219.
[23]Zhang M Y,Bai S H,Tang L,et al. Linking potential nitrification rates,nitrogen cycling genes and soil properties after remediating the agricultural soil contaminated with heavy metal and fungicide[J]. Chemosphere,2017,184:892-899.
[24]曹本福,姜海霞,陆引罡,等. 烟草与丛枝菌根真菌的共生效应研究进展[J]. 中国土壤与肥料,2021(1):327-338.
[25]Geisseler D,Horwath W R,Joergensen R G,et al. Pathways of nitrogen utilization by soil microorganisms-a review[J]. Soil Biology and Biochemistry,2010,42(12):2058-2067.
[26]Williams T D,Diab A M,George S G,et al. Development of the GENIPOL European flounder (Platichthys flesus) microarray and determination of temporal transcriptional responses to cadmium at low dose[J]. Environmental Science & Technology,2006,40(20):6479-6488.
[27]Sun Z C,Bruun E W,Arthur E,et al. Effect of biochar on aerobic processes,enzyme activity,and crop yields in two sandy loam soils[J]. Biology and Fertility of Soils,2014,50(7):1087-1097.
[28]吴照祥,刘巧丽,李辉虎,等. 有机肥对退化红壤中细菌群落功能组成影响的PICRUSt基因预测分析[J]. 江苏农业科学,2021,49(16):60-66.
[29]Ribbons R R,Levy-Booth D J,Masse J,et al. Linking microbial communities,functional genes and nitrogen-cycling processes in forest floors under four tree species[J]. Soil Biology and Biochemistry,2016,103:181-191.
[30]于翠,李欣,朱志贤,等. 长期偏施氮肥对桑园土壤氨氧化微生物的影响[J]. 中国土壤与肥料,2021(3):35-44.
[31]张静,杨鹏,余伟,等. 攀枝花不同海拔高度烤烟农田红壤中氨氧化细菌与氨氧化古菌的群落结构分析[J]. 生态学报,2021,41(8):3092-3099.
[32]陈雪丽,王玉峰,王爽,等. 农田土壤中氨氧化细菌群落多样性研究进展[J]. 东北农业大学学报,2013,44(2):151-154.

相似文献/References:

[1]朱强,邹梦辉,安黎,等.琼花对4种草坪植物的化感作用[J].江苏农业科学,2014,42(10):172.
 Zhu Qiang,et al.Allelopathy of Viburnum macrocephalum to four turfgrass plants[J].Jiangsu Agricultural Sciences,2014,42(23):172.
[2]王小山,朱平华,鲍国成,等.盐碱胁迫对紫花苜蓿根、茎和叶重要养分离子平衡的影响[J].江苏农业科学,2013,41(07):190.
 Wang Xiaoshan,et al.Effect of salt stress on important nutrient ion balance in roots,stems and leaves of Medicago sativa[J].Jiangsu Agricultural Sciences,2013,41(23):190.
[3]王丽学,李振鹏,刘四平,等.玉米在不同覆盖方式处理下的土壤水温差异[J].江苏农业科学,2016,44(03):82.
 Wang Lixue,et al.Differences of soil moisture and temperature under different mulching treatments of maize[J].Jiangsu Agricultural Sciences,2016,44(23):82.
[4]田福平,李锦华,张怀山,等.耐旱丰产紫花苜蓿新品系杂选1号的选育及栽培技术[J].江苏农业科学,2013,41(10):92.
 Tian Fuping,et al.Breeding and cultivation techniques of new Medicago sativa lines “Zaxuan No.1”[J].Jiangsu Agricultural Sciences,2013,41(23):92.
[5]杨杰,谷陈建,吴豪杰,等.有机肥和紫花苜蓿对长期抛荒贫瘠土壤的改良效果[J].江苏农业科学,2013,41(12):362.
 Yang Jie,et al.Comparison of improved effects of organic fertilizer and alfalfa on long-abandoned barren soils[J].Jiangsu Agricultural Sciences,2013,41(23):362.
[6]王桂君,许振文,田晓露,等.生物炭对盐碱化土壤理化性质及小麦幼苗生长的影响[J].江苏农业科学,2013,41(12):390.
 Wang Guijun,et al.Effects of biochar on physiochemical properties of soil and growth of wheat seedlings in saline-alkali soil[J].Jiangsu Agricultural Sciences,2013,41(23):390.
[7]张学艳,曹莹,孟军,等.生物炭对镉胁迫下水稻生长及光合产量的影响[J].江苏农业科学,2016,44(05):97.
 Zhang Xueyan,et al.Effect of biochar on growth and photosynthesis yield of rice under stress of cadmium[J].Jiangsu Agricultural Sciences,2016,44(23):97.
[8]周恒,时永杰,路远,等.不同种植年限紫花苜蓿种植地土壤容重及含水量特征[J].江苏农业科学,2016,44(05):490.
 Zhou Heng,et al.Study on soil bulk density and soil water content in alfalfa field with different growing years[J].Jiangsu Agricultural Sciences,2016,44(23):490.
[9]张丽辉,贾泽君,孙奇,等.2种紫花苜蓿幼苗生长对光照度的可塑性响应[J].江苏农业科学,2015,43(12):263.
 Zhang Lihui,et al.Plasticity response of seedling growth of two Medicago sativa species to light intensity[J].Jiangsu Agricultural Sciences,2015,43(23):263.
[10]邱月,张辉.包膜氮肥、保水剂和生物炭在控制农田土壤氮素损失方面的应用综述[J].江苏农业科学,2015,43(10):417.
 Qiu Yue,et al.Application of coated fertilizer, water retention agent and biochar in controlling nitrogen loss in agricultural soil:a review[J].Jiangsu Agricultural Sciences,2015,43(23):417.

备注/Memo

备注/Memo:
收稿日期:2022-03-01
基金项目:河南省重点研发与推广专项(编号:202002110148)。
作者简介:夏广英(1980—),女,河南平顶山人,讲师,主要从事草业与畜牧研究。E-mail:xiazwz119@163.com。
更新日期/Last Update: 2022-12-05