|本期目录/Table of Contents|

[1]张中起,梁邦平,王俊涛,等.大豆VLN基因家族的全基因组鉴定及组织表达分析[J].江苏农业科学,2023,51(3):35-45.
 Zhang Zhongqi,et al.Genome-wide identification and tissue expression analysis of VLN gene family in soybean[J].Jiangsu Agricultural Sciences,2023,51(3):35-45.
点击复制

大豆VLN基因家族的全基因组鉴定及组织表达分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第3期
页码:
35-45
栏目:
生物技术
出版日期:
2023-02-05

文章信息/Info

Title:
Genome-wide identification and tissue expression analysis of VLN gene family in soybean
作者:
张中起 梁邦平 王俊涛 高保民 刘艳 王秋玲
菏泽市农业科学院大豆研究所,山东菏泽 274000
Author(s):
Zhang Zhongqiet al
关键词:
大豆VLN基因家族鉴定表达分析
Keywords:
-
分类号:
S565.103.2
DOI:
-
文献标志码:
A
摘要:
绒毛蛋白(villin,VLN)是最重要的肌动蛋白结合蛋白(actin-binding proteins,简称ABPs)之一,参与肌动蛋白丝的解聚和组装,具有成核、成帽、切割和捆绑等重要的功能。分析大豆VLN基因家族成员的数量、序列特征、系统进化和表达模式,为阐明大豆VLNs基因的生物学功能奠定基础。通过HMM方法检索大豆中黄13的参考基因组,鉴定大豆VLN基因家族成员;利用在线网站NCBI-CDD、SMART、PDB、ExPASy和Plant-mPLoc分析大豆VLNs蛋白的理化性质;利用MG2C、GSDS、MEME和PlantCARE分析大豆VLNs基因的序列特征;通过转录组测序数据分析大豆VLNs基因表达模式;利用在线网站STRING 11.5构建大豆VLNs蛋白互作网络。从大豆中共鉴定出8个VLNs基因,它们分布于8条染色体,亚细胞定位均位于细胞质。大豆VLN家族基因的外显子/内含子数量较多且基因序列较长,启动子区有大量与生长发育、植物激素、生物胁迫和非生物胁迫等相关的响应元件,成员间蛋白序列有一定的保守性和相似性,大豆VLN家族蛋白在系统进化上分为3组。部分大豆VLNs基因在根、茎、花、荚和种子中特异性表达,蛋白互作网络显示成员间存在潜在的相互作用。大豆VLN基因家族的全基因组鉴定及生物信息学分析结果,为进一步解析大豆VLNs基因功能提供了重要的理论基础。大豆共有8个VLNs基因,它们均定位于细胞质,具有响应生长发育、激素和胁迫的调控元件,GmVLN3、GmVLN5和GmVLN6在根、茎、荚中特异性优势表达。
Abstract:
-

参考文献/References:

[1]Smith L G. Cytoskeletal control of plant cell shape:getting the fine points[J]. Current Opinion in Plant Biology,2003,6(1):63-73.
[2]Papuga J,Hoffmann C,Dieterle M,et al. Arabidopsis LIM proteins:a family of actin bundlers with distinct expression patterns and modes of regulation[J]. The Plant Cell,2010,22(9):3034-3052.
[3]van Gisbergen P A C,Bezanilla M. Plant formins:membrane anchors for actin polymerization[J]. Trends in Cell Biology,2013,23(5):227-233.
[4]Wang C,Zhang L,Yuan M,et al. The microfilament cytoskeleton plays a vital role in salt and osmotic stress tolerance in Arabidopsis[J]. Plant Biology,2010,12(1):70-78.
[5]Tominaga M,Yokota E,Vidali L,et al. The role of plant villin in the organization of the actin cytoskeleton,cytoplasmic streaming and the architecture of the transvacuolar strand in root hair cells of Hydrocharis[J]. Planta,2000,210(5):836-843.
[6]Marks P W,Arai M,Bandura J L,et al. Advillin (p92):a new member of the gelsolin/villin family of actin regulatory proteins[J]. Journal of Cell Science,1998,111(15):2129-2136.
[7]Rana A P,Ruff P,Maalouf G J,et al. Cloning of human erythroid dematin reveals another member of the villin family[J]. Proceedings of the National Academy of Sciences of the United States of America,1993,90(14):6651-6655.
[8]Dabiri G A,Young C L,Rosenbloom J,et al. Molecular cloning of human macrophage capping protein cDNA. A unique member of the gelsolin/villin family expressed primarily in macrophages[J]. Journal of Biological Chemistry,1992,267(23):16545-16552.
[9]Yarmola E G,Somasundaram T,Boring T A,et al. Actin-latrunculin A structure and function[J]. Journal of Biological Chemistry,2000,275(36):28120-28127.
[10]Thomas C,Hoffmann C,Dieterle M,et al. Tobacco WLIM1 is a novel F-actin binding protein involved in actin cytoskeleton remodeling[J]. The Plant Cell,2006,18(9):2194-2206.
[11]Shibata M,Ishii J,Koizumi H,et al. Type F scavenger receptor SREC-I interacts with advillin,a member of the gelsolin/villin family,and induces neurite-like outgrowth[J]. Journal of Biological Chemistry,2004,279(38):40084-40090.
[12]Friederich E,Vancompernolle K,Louvard D,et al. Villin function in the organization of the actin cytoskeleton:correlation of in vivo effects to its biochemical activities in vitro[J]. The Journal of Biological Chemistry,1999,274(38):26751-26760.
[13]Klahre U,Friederich E,Kost B,et al. Villin-like actin-binding proteins are expressed ubiquitously in Arabidopsis[J]. Plant Physiology,2000,122(1):35-48.
[14]Lv F N,Wang S,Tian R P,et al. Villin family members associated with multiple stress responses in cotton[J]. Phyton,2021,90(6):1645-1660.
[15]Yokota E,Tominaga M,Mabuchi I,et al. Plant villin,lily P-135-ABP,possesses G-actin binding activity and accelerates the polymerization and depolymerization of actin in a Ca2+-sensitive manner[J]. Plant and Cell Physiology,2005,46(10):1690-1703.
[16]Huang S J,Robinson R C,Gao L Y,et al. Arabidopsis VILLIN1 generates actin filament cables that are resistant to depolymerization[J]. The Plant Cell,2005,17(2):486-501.
[17]Wang X L,Bi S T,Wang L,et al. GLABRA2 regulates actin bundling protein VILLIN1 in root hair growth in response to osmotic stress[J]. Plant Physiology,2020,184(1):176-193.
[18]Bao C C,Wang J,Zhang R H,et al. Arabidopsis VILLIN2 and VILLIN3 act redundantly in sclerenchyma development via bundling of actin filaments[J]. The Plant Journal,2012,71(6):962-75.
[19]van der Honing H S,Kieft H,Emons A M C,et al. Arabidopsis VILLIN2 and VILLIN3 are required for the generation of thick actin filament bundles and for directional organ growth[J]. Plant Physiology,2012,158(3):1426-1438.
[20]Khurana P,Henty J L,Huang S J,et al. Arabidopsis VILLIN1 and VILLIN3 have overlapping and distinct activities in actin bundle formation and turnover[J]. Plant Cell,2010,22(8):2727-2748.
[21]Du F,Zhang Y,Ren H. The universal bundling activity of AtVLN4 in diffusely growing cells[J]. Plant Signaling & Behavior,2011,6(9):1290-1293.
[22]Zhu J G,Nan Q,Qin T,et al. Higher-ordered actin structures remodeled by Arabidopsis ACTIN-DEPOLYMERIZING FACTOR5 are important for pollen germination and pollen tube growth[J]. Molecular Plant,2017,10(8):1065-1081.
[23]Wang Y,Zhang W Z,Song L F,et al. Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis[J]. Plant Physiology,2008,148(3):1201-1211.
[24]Zhang H,Qu X L,Bao C C,et al. Arabidopsis VILLIN5,an actin filament bundling and severing protein,is necessary for normal pollen tube growth[J]. The Plant Cell,2010,22(8):2749-2767.
[25]Zhao W Y,Qu X L,Zhuang Y H,et al. Villin controls the formation and enlargement of punctate actin foci in pollen tubes[J]. Journal of Cell Science,2020,133(6):jcs237404.
[26]Wu S Y,Xie Y R,Zhang J J,et al. VLN2 regulates plant architecture by affecting microfilament dynamics and polar auxin transport in rice[J]. The Plant Cell,2015,27(10):2829-2845.
[27]Farquharson K L. VILLIN2 emerges as a master builder in rice[J]. The Plant Cell,2015,27(10):2675.
[28]Lv F N,Han M Y,Ge D D,et al. GhVLN4 is involved in cell elongation via regulation of actin organization[J]. Planta,2017,246(4):687-700.
[29]Ge D D,Pan T,Zhang P P,et al. GhVLN4 is involved in multiple stress responses and required for resistance to Verticillium wilt[J]. Plant Science,2021,302:110629.
[30]Shen Y T,Liu J,Geng H Y,et al. De novo assembly of a Chinese soybean genome[J]. Science China Life Sciences,2018,61(8):871-884.
[31]Shen Y T,Du H L,Liu Y C,et al. Update soybean Zhonghuang 13 genome to a golden reference[J]. Science China Life Sciences,2019,62(9):1257-1260.
[32]Grant D,Nelson R T,Cannon S B,et al. SoyBase,the USDA-ARS soybean genetics and genomics database[J]. Nucleic Acids Research,2010,38:D843-D846.
[33]Brown A V,Conners S I,Huang W,et al. A new decade and new data at SoyBase,the USDA-ARS soybean genetics and genomics database[J]. Nucleic Acids Research,2021,49(D1):D1496-D1501.
[34]Mistry J,Chuguransky S,Williams L,et al. Pfam:The protein families database in 2021[J]. Nucleic Acids Research,2021,49(D1):D412-D419.
[35]Finn R D,Bateman A,Clements J,et al. Pfam:the protein families database[J]. Nucleic Acids Research,2014,42:D222-D230.
[36]Majoros W H,Pertea M,Delcher A L,et al. Efficient decoding algorithms for generalized hidden Markov model gene finders[J]. BMC Bioinformatics,2005,6:16.
[37]Marchler-Bauer A,Derbyshire M K,Gonzales N R,et al. CDD:NCBIs conserved domain database[J]. Nucleic Acids Research,2014,43:D222-D226.
[38]Lu S N,Wang J Y,Chitsaz F,et al. CDD/SPARCLE:the conserved domain database in 2020[J]. Nucleic Acids Research,2019,48(D1):D265-D268.
[39]Letunic I,Bork P. 20 years of the SMART protein domain annotation resource[J]. Nucleic Acids Research,2017,46(D1):D493-D496.
[40]Letunic I,Doerks T,Bork P. SMART 7:recent updates to the protein domain annotation resource[J]. Nucleic Acids Research,2011,40(D1):D302-D305.
[41]Nayarisseri A,Shardiwal R K,Yadav M,et al. PDB explorer:a web based algorithm for protein annotation viewer and 3D visualization[J]. Interdisciplinary Sciences,2014,6(4):279-284.
[42]Schneider M,Tognolli M,Bairoch A. The Swiss-Prot protein knowledgebase and ExPASy:providing the plant community with high quality proteomic data and tools[J]. Plant Physiology and Biochemistry,2004,42(12):1013-1021.
[43]Chou K C,Shen H B. Plant-mPLoc:a top-down strategy to augment the power for predicting plant protein subcellular localization[J]. PLoS One,2010,5(6):e11335.
[44]晁江涛,孔英珍,王倩,等. MapGene2Chrom基于Perl 和SVG 语言绘制基因物理图谱[J]. 遗传,2015,37(1):91-97.
[45]Hu B,Jin J P,Guo A Y,et al. GSDS 2.0:an upgraded gene feature visualization server[J]. Bioinformatics,2014,31(8):1296-1297.
[46]Bailey T L,Johnson J,Grant C E,et al. The MEME suite[J]. Nucleic Acids Research,2015,43(W1):W39-W49.
[47]Lescot M,Déhais P,Thijs G,et al. PlantCARE,a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research,2002,30(1):325-327.
[48]Tamura K,Stecher G,Kumar S,et al. MEGA11:molecular evolutionary genetics analysis version 11[J]. Molecular Biology and Evolution,2021,38(7):3022-3027.
[49]Chen C J,Chen H,Zhang Y,et al. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant,2020,13(8):1194-1202.
[50]Wang Y Q,Song F H,Zhu J W,et al. GSA:genome sequence archive[J]. Genomics,Proteomics & Bioinformatics,2017,15(1):14-18.

相似文献/References:

[1]赵银月,耿智德,王铁军.云南省大豆地方种质资源的籽粒特征特性分析及评价[J].江苏农业科学,2013,41(04):62.
[2]朱倩,谢飒英,谢三刚,等.稀土LaCl3对大豆叶绿素含量及a/b值的影响[J].江苏农业科学,2013,41(06):81.
 Zhu Qian,et al.Effect of LaCl3 on chlorophyll content and the ratio of chlorophyll a to chlorophyll b in soybean[J].Jiangsu Agricultural Sciences,2013,41(3):81.
[3]王宗标,王幸,徐泽俊,等.植物保健剂对大豆产量及农艺性状的影响[J].江苏农业科学,2013,41(06):85.
 Wang Zongbiao,et al.Effects of plant health care agent on yield and agronomic traits of soybean[J].Jiangsu Agricultural Sciences,2013,41(3):85.
[4]徐明坤,胥义.冷冻干燥法制备快速制浆半成品大豆的工艺条件优化[J].江苏农业科学,2013,41(06):216.
 Xu Mingkun,et al.Optimization of technological conditions for preparation of semi-finished soybean products for quick soybean milk production by freeze-drying method[J].Jiangsu Agricultural Sciences,2013,41(3):216.
[5]陈新,袁星星,崔晓艳,等.江苏省大豆生产发展布局与未来发展方向[J].江苏农业科学,2013,41(08):5.
 Chen Xin,et al.Layout and future direction of soybean production development in Jiangsu Province[J].Jiangsu Agricultural Sciences,2013,41(3):5.
[6]李丽丽,郎敬,杨洪一,等.大豆根际解磷菌的鉴定[J].江苏农业科学,2014,42(08):363.
 Li Lili,et al.Identification of phosphate-solubilizing bacteria in rhizosphere of soybean[J].Jiangsu Agricultural Sciences,2014,42(3):363.
[7]孙彦坤,于越,任红玉,等.不同生育期喷施稀土镧和铈对大豆膜透性的Hormesis效应[J].江苏农业科学,2016,44(03):88.
 Sun Yankun,et al.Hormetic effect of lanthanum and cerium on soybean membrane permeability in different growth period[J].Jiangsu Agricultural Sciences,2016,44(3):88.
[8]马绍华,易福金,王学君.中国大豆进口市场势力综合分析[J].江苏农业科学,2016,44(03):527.
 Ma Shaohua,et al.Comprehensive analysis of Chinas soybean import market forces[J].Jiangsu Agricultural Sciences,2016,44(3):527.
[9]刘志良.丘陵红壤喷施钼肥对大豆产量及经济性状的影响[J].江苏农业科学,2013,41(12):77.
 Liu Zhiliang.Effects of molybdate fertilizer on yield and economic traits of soybean in red soil hilly area[J].Jiangsu Agricultural Sciences,2013,41(3):77.
[10]李凯,盖钧镒,邱家驯,等.大豆新品种南农39的选育及栽培技术[J].江苏农业科学,2013,41(12):110.
 Li Kai,et al.Breeding and cultivation techniques of new soybean cultivar “Nannong 39”[J].Jiangsu Agricultural Sciences,2013,41(3):110.

备注/Memo

备注/Memo:
收稿日期:2022-03-16
基金项目:山东省现代农业产业技术体系杂粮创新团队(编号:SDAIT-15-02);山东省农业良种工程优质高蛋白大豆突破性新品种选育(编号:2019LZGC004)。
作者简介:张中起(1991—),男,山东菏泽人,硕士,农艺师,主要从事大豆遗传育种研究。E-mail:soybean2021@163.com。
通信作者:王秋玲,研究员,主要从事大豆遗传育种研究。E-mail:wangqiuling@163.com。
更新日期/Last Update: 2023-02-05