|本期目录/Table of Contents|

[1]段明.基于Illumina MiSeq技术分析谷子根际丛枝菌根真菌群落多样性[J].江苏农业科学,2023,51(6):222-229.
 Duan Ming.Study on arbuscular mycorrhizal fungi diversity in rhizosphere of foxtail millet based on Illumina MiSeq technology[J].Jiangsu Agricultural Sciences,2023,51(6):222-229.
点击复制

基于Illumina MiSeq技术分析谷子根际丛枝菌根真菌群落多样性(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第6期
页码:
222-229
栏目:
资源与环境
出版日期:
2023-03-20

文章信息/Info

Title:
Study on arbuscular mycorrhizal fungi diversity in rhizosphere of foxtail millet based on Illumina MiSeq technology
作者:
段明
山西农业大学实验教学中心,山西太谷 030801
Author(s):
Duan Ming
关键词:
谷子丛枝菌根Illumina Miseq技术群落多样性
Keywords:
-
分类号:
S515.01;S182
DOI:
-
文献标志码:
A
摘要:
为研究谷子(Setaria italica)根际丛枝菌根真菌(AMF)群落的多样性特征,以便充分发掘和利用AMF优势菌群。本试验对土壤进行正常浇水与干旱处理,土壤含水量分别为7.6%和3.7%,并采集谷子(豫谷、安陵和沁黄3个品种)根系及无寄主对照土壤(CK),获得全部DNA并对其中的18S rRNA基因进行PCR扩增,并运用MiSeq高通量测序技术和生物信息学研究谷子的根际AMF及群落特征。物种多样性分析结果显示,在正常浇水与干旱处理下,谷子根系与CK的OTU数量在1 632~4 290个之间,共检测并鉴定出AMF 126种,隶属1门9属。其中,按优势种的占比高低依次是原囊霉属(Acaulospora)、球囊霉属(Glomus)、类球囊霉属(Paraglomus)和双型囊霉属(Ambispora)。与CK相比,谷子根际AMF群落多样性减少,AMF在原囊霉属水平上丰度显著降低。但正常浇水与干旱处理下,谷子根际AMF群落多样性并未发生显著变化。研究揭示了谷子根际AMF群落组成,主要为球囊霉属;与CK相比,3个谷子品种AMF群落分布在多样性及丰度方面具有普遍的相似性。此外,与正常浇水相比,干旱条件下谷子根际丛枝菌根群落多样性及丰度保持稳定,维持在较高的水平,可保证谷子根系对水分和养分的高效吸收与利用。
Abstract:
-

参考文献/References:

[1]Diao X M,Schnable J L,Bennetzen J,et al. Initiation of Setaria as a model plant[J]. Front Agr Sci Eng,2014,1(1):16-20.
[2]Tang S,Li L,Wang Y Q,et al. Genotype-specific physiological and transcriptomic responses to drought stress in Setaria italica (an emerging model for Panicoideae grasses)[J]. Scientific Reports,2017,7:10009.
[3]Ceasar S A,Hodge A,Baker A,et al. Phosphate concentration and arbuscular mycorrhizal colonisation influence the growth,yield and expression of twelve PHT1 family phosphate transporters in foxtail millet (Setaria italica)[J]. PLoS One,2014,9(9):e108459.
[4]Kobae Y,Kameoka H,Sugimura Y,et al. Strigolactone biosynthesis genes of rice are required for the punctual entry of arbuscular mycorrhizal fungi into the roots[J]. Plant and Cell Physiology,2018,59(3):544-553.
[5]Rodríguez-Echeverría S,Teixeira H,Correia M,et al. Arbuscular mycorrhizal fungi communities from tropical Africa reveal strong ecological structure[J]. The New Phytologist,2017,213(1):380-390.
[6]Honnay O,Helsen K,van Geel M. Plant community reassembly on restored semi-natural grasslands lags behind the assembly of the arbuscular mycorrhizal fungal communities[J]. Biological Conservation,2017,212:196-208.
[7]Courty P E,Smith P,Koegel S,et al. Inorganic nitrogen uptake and transport in beneficial plant root-microbe interactions[J]. Crit Rev Plant Sci,2015,34:4-16.
[8]Wu N,Li Z,Wu F,et al. Comparative photochemistry activity and antioxidant responses in male and female Populus cathayana cuttings inoculated with arbuscular mycorrhizal fungi under salt[J]. Scientific Reports,2016,6:37663.
[9]Li T,Hu Y J,Hao Z P,et al. First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus Glomus intraradices[J]. The New Phytologist,2013,197(2):617-630.
[10]Martin P. Arbuscular mycorrhiza:the mother of plant root endosymbioses[J]. Nature Reviews Microbiology,2008,6(10):763-75.
[11]Luginbuehl L H,Oldroyd G E D. Understanding the arbuscule at the heart of endomycorrhizal symbioses in plants[J]. Current Biology,2017,27(17):R952-R963.
[12]MacLean A M,Bravo A,Harrison M J. Plant signaling and metabolic pathways enabling arbuscular mycorrhizal symbiosis[J]. The Plant Cell,2017,29(10):2319-2335.
[13]Pimprikar P,Gutjahr C. Transcriptional regulation of arbuscular mycorrhiza development[J]. Plant and Cell Physiology,2018,59(4):678-695.
[14]Nielsen U N,Wall D H,Six J. Soil biodiversity and the environment[J]. Annual Review of Environment and Resources,2015,40:63-90.
[15]Sasse J,Martinoia E,Northen T. Feed your friends:do plant exudates shape the root microbiome?[J]. Trends in Plant Science,2018,23(1):25-41.
[16]Lanfranco L,Bonfante P,Genre A. The mutualistic interaction between plants and arbuscular mycorrhizal fungi[J]. Microbiology Spectrum,2016,4(6):10.1128/microbiolspec. FUNK-0012-2016.
[17]Roth R,Paszkowski U. Plant carbon nourishment of arbuscular mycorrhizal fungi[J]. Current Opinion in Plant Biology,2017,39:50-56.
[18]Smith S E,Jakobsen I,Grnlund M,et al. Roles of arbuscular mycorrhizas in plant phosphorus nutrition:interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition[J]. Plant Physiology,2011,156(3):1050-1057.
[19]Dessaux Y,Grandclément C,Faure D. Engineering the rhizosphere[J]. Trends in Plant Science,2016,21(3):266-278.
[20]Philippot L,Raaijmakers J M,Lemanceau P,et al. Going back to the roots:the microbial ecology of the rhizosphere[J]. Nature Reviews Microbiology,2013,11(11):789-799.
[21]Maestre F T,Delgado-Baquerizo M,Jeffries T C,et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands[J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(51):15684-15689.

相似文献/References:

[1]李岳峰,居立海,张来运,等.水分胁迫下丛枝菌根对水稻/绿豆间作系统 作物生长和氮磷吸收的影响[J].江苏农业科学,2013,41(04):58.
[2]李会芬,时丽冉,崔兴国,等.水分胁迫对不同品种谷子萌发期的影响[J].江苏农业科学,2013,41(05):67.
 Li Huifen,et al.Effect of water stress on germination stage of different millet cultivars[J].Jiangsu Agricultural Sciences,2013,41(6):67.
[3]赵敏,李书田,王显瑞,等.谷子新品种峰红谷的选育及栽培要点[J].江苏农业科学,2013,41(11):116.
 Zhao Min,et al.Breeding and cultivation techniques of new millet cultivar “Fenghonggu”[J].Jiangsu Agricultural Sciences,2013,41(6):116.
[4]张艾英,郭素芬,张莉,等.膜侧沟播对旱地春谷生理生态特性及产量的影响[J].江苏农业科学,2016,44(06):148.
 Zhang Aiying,et al.Effects of ridge film mulching and furrow seeding on eco-physiological property and yield of spring foxtail millet in dry land[J].Jiangsu Agricultural Sciences,2016,44(6):148.
[5]呼红梅,王莉.氮、磷、钾对盐胁迫谷子幼苗形态和生理指标的影响[J].江苏农业科学,2016,44(02):117.
 Hu Hongmei,et al.Effects of nitrogen,phosphorus and potassium on seedling morphology and physiology indices of millet under salt stress[J].Jiangsu Agricultural Sciences,2016,44(6):117.
[6]王彦杰,毕少杰,洪秀杰,等.不同浓度沼液浸种和喷施对谷子生长的影响[J].江苏农业科学,2015,43(10):119.
 Wang Yanjie,et al.Effect of soaking and spraying with different concentrations of biogas slurry on growth of millet[J].Jiangsu Agricultural Sciences,2015,43(6):119.
[7]李艳,吴强盛.菌根真菌对不同基因型柑橘根际有效磷含量和磷酸酶活性的影响[J].江苏农业科学,2014,42(06):186.
 Li Yan,et al.Effects of mycorrhizal fungi on rhizosphere available phosphorus content and phosphatase activity of different genotypes of citrus[J].Jiangsu Agricultural Sciences,2014,42(6):186.
[8]王凌云,郭明,赵艳,等.谷子蔗糖合成酶基因家族鉴定及生物信息学分析[J].江苏农业科学,2017,45(15):30.
 Wang Lingyun,et al.Family identification and bioinformatics analysis of millet sucrose synthase gene[J].Jiangsu Agricultural Sciences,2017,45(6):30.
[9]段明.谷子EPSPS基因的分离、修饰及表达载体的构建[J].江苏农业科学,2016,44(05):51.
 Duan Ming.Separation, modification and construction of expression vector for millet EPSPS gene[J].Jiangsu Agricultural Sciences,2016,44(6):51.
[10]徐洪文,卢妍,朱先灿.丛枝菌根对玉米叶片SPAD值及光合作用光响应特征的影响[J].江苏农业科学,2016,44(11):119.
 Xu Hongwen,et al.Effects of arbuscular mycorrhizal on SPAD value and light response curve characteristics of maize leaves[J].Jiangsu Agricultural Sciences,2016,44(6):119.

备注/Memo

备注/Memo:
收稿日期:2022-05-13
基金项目:山西省自然科学研究面上项目(编号:20210302123395);山西农业大学科技创新基金(编号:2017GPY01)。
作者简介:段明(1984—),男,山东威海人,博士,副教授,主要从事植物抗逆分子生物学研究。E-mail:duanming840305@163.com。
更新日期/Last Update: 2023-03-20