|本期目录/Table of Contents|

[1]翟森茂,毛欣宇,陈星,等.黄孢原毛平革菌联合生物炭对鸡粪好氧堆肥木质素降解和腐熟度的影响[J].江苏农业科学,2023,51(7):227-235.
 Zhai Senmao,et al.Influences of biochar combined with Phanerochaete chrysosporium on lignin degradation and humification during chicken manure composting[J].Jiangsu Agricultural Sciences,2023,51(7):227-235.
点击复制

黄孢原毛平革菌联合生物炭对鸡粪好氧堆肥木质素降解和腐熟度的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第7期
页码:
227-235
栏目:
资源与环境
出版日期:
2023-04-05

文章信息/Info

Title:
Influences of biochar combined with Phanerochaete chrysosporium on lignin degradation and humification during chicken manure composting
作者:
翟森茂1毛欣宇1陈星2匡伟3王润之3邵孝候1
1.河海大学农业科学与工程学院,江苏南京 211000; 2.江苏省科协农村技术服务中心,江苏南京 210098;3.南京市畜牧家禽科学研究所,江苏南京 211000
Author(s):
Zhai Senmaoet al
关键词:
鸡粪黄孢原毛平革菌生物炭木质素腐熟度微生物群落
Keywords:
-
分类号:
S216.2;S141.4
DOI:
-
文献标志码:
A
摘要:
为确定生物炭与黄孢原毛平革菌(Phanerochaete chrysosporium)联合添加对堆肥腐殖化进程的促进作用,以新鲜鸡粪和稻壳为堆肥原料,黄孢原毛平革菌为接种菌剂,玉米秸秆生物炭为添加剂开展好氧堆肥研究,设置1个空白对照(CK)和T1(生物炭)、T2(黄孢原毛平革菌)、T3(生物炭+黄孢原毛平革菌)3个处理,探究生物炭与黄孢原毛平革菌的联合添加对堆体木质素降解和腐熟度的影响。结果表明,生物炭与黄孢原毛平革菌联合作用下,堆体的种子发芽指数(111.40%)和总有机碳降解率(40.41%)最高,均明显高于其他处理;堆体木质素降解速率和胡敏酸含量提升明显,堆肥结束时,CK、T1、T2和T3处理的木质素降解率分别为15.48%、22.12%、16.11%和28.20%,胡敏酸含量分别增加了31.42%、82.27%、117.43%和152.65%,T3处理的促腐熟作用明显高于其他处理。堆肥腐熟进程与微生物群落结构的相关性分析表明,堆体的优势真菌为子囊菌门(Ascomycota),堆体含水率的降低可提高其丰度,促进木质素的降解。因此,生物炭与黄孢原毛平革菌的联合添加促进了木质素的深度降解,从而强化堆肥的腐殖化进程,提高堆肥品质。
Abstract:
-

参考文献/References:

[1]Ge M S,Shen Y J,Ding J T,et al. New insight into the impact of moisture content and pH on dissolved organic matter and microbial dynamics during cattle manure composting[J]. Bioresource Technology,2022,344:126236.
[2]Akdeniz N. A systematic review of biochar use in animal waste composting[J]. Waste Management,2019,88:291-300.
[3]Zhao Y,Wei Y Q,Zhang Y,et al. Roles of composts in soil based on the assessment of humification degree of fulvic acids[J]. Ecological Indicators,2017,72:473-480.
[4]Jokic A,Wang M C,Liu C,et al. Integration of the polyphenol and Maillard reactions into a unified abiotic pathway for humification in nature[J]. Organic Geochemistry,2004,35(6):747-762.
[5]Atiwesh G,Parrish C C,Banoub J,et al. Lignin degradation by microorganisms:a review[J]. Biotechnology Progress,2022,38(2):e3226.
[6]马丽婷,徐智,赵兵,等. 不同时期接种黄孢原毛平革菌对稻壳和鸡粪堆肥腐殖化的影响[J]. 中国生态农业学报(中英文),2022,30(9):1522-1530.
[7]Khatami S,Ying D,Ming T E,et al. Formation of water-soluble organic matter through fungal degradation of lignin[J]. Organic Geochemistry,2019,135:64-70.
[8]You T T,Li X,Wang R Z,et al. Effects of synergistic fungal pretreatment on structure and thermal properties of lignin from corncob[J]. Bioresource Technology,2019,272:123-129.
[9]Brzonova I,Asina F,Andrianova A A,et al. Fungal biotransformation of insoluble kraft lignin into a water soluble polymer[J]. Industrial & Engineering Chemistry Research,2017,56(21):6103-6113.
[10]Wang N,Huang D D,Bai X Y,et al. Mechanism of digestate-derived biochar on odorous gas emissions and humification in composting of digestate from food waste[J]. Journal of Hazardous Materials,2022,434:128878.
[11]李安,张鸿琼,周岭,等. 添加枣枝炭对猪粪堆肥过程腐熟度影响及评价方法[J]. 塔里木大学学报,2022,34(2):80-89.
[12]Jiang J S,Wang Y,Yu D,et al. Comparative evaluation of biochar,pelelith,and garbage enzyme on nitrogenase and nitrogen-fixing bacteria during the composting of sewage sludge[J]. Bioresource Technology,2021,333:125165.
[13]Yang Y J,Awasthi M K,Bao H Y,et al. Exploring the microbial mechanisms of organic matter transformation during pig manure composting amended with bean dregs and biochar[J]. Bioresource Technology,2020,313:123647.
[14]Ren X N,Wang Q,Awasthi M K,et al. Improvement of cleaner composting production by adding diatomite:from the nitrogen conservation and greenhouse gas emission[J]. Bioresource Technology,2019,286:121377.
[15]Zhou Y,Selvam A,Wong J W C. Evaluation of humic substances during co-composting of food waste,sawdust and Chinese medicinal herbal residues[J]. Bioresource Technology,2014,168:229-234.
[16]van Soest P J,Robertson J B,Lewis B A. Methods for dietary fiber,neutral detergent fiber,and nonstarch polysaccharides in relation to animal nutrition[J]. Journal of Dairy Science,1991,74(10):3583-3597.
[17]国家质量监督检验检疫总局,中国国家标准化管理委员会. 粪便无害化卫生要求:GB 7959—2012[S]. 北京:中国标准出版社,2013.
[18]吴银宝,汪植三,廖新,等. 猪粪堆肥腐熟指标的研究[J]. 农业环境科学学报,2003,22(2):189-193.
[19]Jiang J S,Wang Y,Liu J,et al. Exploring the mechanisms of organic matter degradation and methane emission during sewage sludge composting with added vesuvianite:insights into the prediction of microbial metabolic function and enzymatic activity[J]. Bioresource Technology,2019,286:121397.
[20]Mao H,Lv Z Y,Sun H D,et al. Improvement of biochar and bacterial powder addition on gaseous emission and bacterial community in pig manure compost[J]. Bioresource Technology,2018,258:195-202.
[21]Saidi N,Kouki S,MHiri F,et al. Microbiological parameters and maturity degree during composting of Posidonia oceanica residues mixed with vegetable wastes in semi-arid pedo-climatic condition[J]. Journal of Environmental Sciences,2009,21(10):1452-1458.
[22]Wang Q,Awasthi M K,Zhao J C,et al. Improvement of pig manure compost lignocellulose degradation,organic matter humification and compost quality with medical stone[J]. Bioresource Technology,2017,243:771-777.
[23]Zhu N,Zhu Y Y,Li B Q,et al. Increased enzyme activities and fungal degraders by Gloeophyllum trabeum inoculation improve lignocellulose degradation efficiency during manure-straw composting[J]. Bioresource Technology,2021,337:125427.
[24]Bai L,Deng Y,Li J,et al. Role of the proportion of cattle manure and biogas residue on the degradation of lignocellulose and humification during composting[J]. Bioresource Technology,2020,307:122941.
[25]Wu J Q,Zhao Y,Zhao W,et al. Effect of precursors combined with bacteria communities on the formation of humic substances during different materials composting[J]. Bioresource Technology,2017,226:191-199.
[26]Barje F,El Fels L,El Hajjouji H,et al. Molecular behaviour of humic acid-like substances during co-composting of olive mill waste and the organic part of municipal solid waste[J]. International Biodeterioration & Biodegradation,2012,74:17-23.
[27]Zhang Z C,Zhao Y,Wang R X,et al. Effect of the addition of exogenous precursors on humic substance formation during composting[J]. Waste Management,2018,79:462-471.
[28]Zhang L L,Ma H X,Zhang H Q,et al. Thermomyces lanuginosus is the dominant fungus in maize straw composts[J]. Bioresource Technology,2015,197:266-275.
[29]Wu D,Wei Z M,Gao X Z,et al. Reconstruction of core microbes based on producing lignocellulolytic enzymes causing by bacterial inoculation during rice straw composting[J]. Bioresource Technology,2020,315:123849.
[30]张红玉. 碳氮比对厨余垃圾堆肥腐熟度的影响[J]. 环境工程,2013,31(2):87-91.
[31]张鹤,李孟婵,杨慧珍,等. 不同碳氮比对牛粪好氧堆肥腐熟过程的影响[J]. 甘肃农业大学学报,2019,54(1):60-67.
[32]陈雅娟,霍培书,程旭艳,等. 物料C/N对鸡粪锯末高温堆肥腐熟过程主要指标的影响研究[J]. 中国农业大学学报,2012,17(5):118-123.
[33]Larney F J,Sullivan D M,Buckley K E,et al. The role of composting in recycling manure nutrients[J]. Canadian Journal of Soil Science,2006,86(4):597-611.
[34]Ye Z M,Ding H,Yin Z L,et al. Evaluation of humic acid conversion during composting under amoxicillin stress:emphasizes the driving role of core microbial communities[J]. Bioresource Technology,2021,337:125483.
[35]Zhang W M,Yu C X,Wang X J,et al. Additives improved saprotrophic fungi for formation of humic acids in chicken manure and corn stover mix composting[J]. Bioresource Technology,2022,346:126626.
[36]Mankar A R,Pandey A,Modak A,et al. Pretreatment of lignocellulosic biomass:a review on recent advances[J]. Bioresource Technology,2021,334:125235.
[37]Song A L,Zhang J Y,Xu D Y,et al. Keystone microbial taxa drive the accelerated decompositions of cellulose and lignin by long-term resource enrichments[J]. Science of the Total Environment,2022,842:156814.
[38]Fukushima M,Yamamoto K,Ootsuka K,et al. Effects of the maturity of wood waste compost on the structural features of humic acids[J]. Bioresource Technology,2009,100(2):791-797.
[39]Wu X J,Liu P F,Wegner C E,et al. Deciphering microbial mechanisms underlying soil organic carbon storage in a wheat-maize rotation system[J]. Science of the Total Environment,2021,788:147798.
[40]Li C N,Li H Y,Yao T,et al. Effects of swine manure composting by microbial inoculation:heavy metal fractions,humic substances,and bacterial community metabolism[J]. Journal of Hazardous Materials,2021,415:125559.
[41]Perkins A K,Rose A L,Grossart H P,et al. Oxic and anoxic organic polymer degradation potential of endophytic fungi from the marine macroalga,Ecklonia radiata[J]. Frontiers in Microbiology,2021,12:726138.
[42]Ren X N,Wang Q,Li R H,et al. Effect of clay on greenhouse gas emissions and humification during pig manure composting as supported by spectroscopic evidence[J]. Science of the Total Environment,2020,737:139712.
[43]Huang Y H,Chen X H,Li Q F,et al. Fungal community enhanced humification and influenced by heavy metals in industrial-scale hyperthermophilic composting of municipal sludge[J]. Bioresource Technology,2022,360:127523.
[44]Duan Y M,Awasthi S K,Liu T,et al. Dynamics of fungal diversity and interactions with environmental elements in response to wheat straw biochar amended poultry manure composting[J]. Bioresource Technology,2019,274:410-417.
[45]Wang K,Yin X B,Mao H L,et al. Changes in structure and function of fungal community in cow manure composting[J]. Bioresource Technology,2018,255:123-130.
[46]Schmidt-Dannert C.Biocatalytic portfolio of basidiomycota[J]. Current Opinion in Chemical Biology,2016,31:40-49.
[47]Wang X Q,Kong Z J,Wang Y H,et al. Insights into the functionality of fungal community during the large scale aerobic co-composting process of swine manure and rice straw[J]. Journal of Environmental Management,2020,270:110958.

相似文献/References:

[1]范广璞,杨猛,黄亚东.利用发酵麦秆和鸡粪开发“绿色”生态基质肥[J].江苏农业科学,2013,41(12):366.
 Fan Guangpu,et al.Development of green ecological base fertilizer using fermented straw and chicken manure[J].Jiangsu Agricultural Sciences,2013,41(7):366.
[2]钱静亚,张正沛,季蓉蓉,等.3株真菌固态发酵产木质素降解酶的研究[J].江苏农业科学,2017,45(05):277.
 Qian Jingya,et al.Study on lignin-degrading enzyme produced by solid-state fermentation of three fungi strains[J].Jiangsu Agricultural Sciences,2017,45(7):277.
[3]张桃香,吴艺妍,田梓莹,等.粪肥对不同类型土壤中沙门氏菌存活动态的影响[J].江苏农业科学,2017,45(05):297.
 Zhang Taoxiang,et al.Effects of manure on survival of salmonella in different soil types[J].Jiangsu Agricultural Sciences,2017,45(7):297.
[4]刘海霞,张力,乔梁.白腐真菌发酵罐产漆酶条件的优化[J].江苏农业科学,2017,45(21):305.
 Liu Haixia,et al.Optimization of fermentation conditions for white-rot fungi in fermentation tank to produce laccase[J].Jiangsu Agricultural Sciences,2017,45(7):305.
[5]钱玉婷,杜静,曹云,等.接种嗜热菌促进鸡粪超高温堆肥处理的效果[J].江苏农业科学,2018,46(23):321.
 Qian Yuting,et al.Impact of inoculating thermophilic bacteria on promotion of hyperthermia composting of chicken manure[J].Jiangsu Agricultural Sciences,2018,46(7):321.
[6]荣荣,郑育声,杨林生,等.生物炭对鸡粪堆肥过程中氨气排放的影响[J].江苏农业科学,2019,47(03):236.
 Rong Rong,et al.Effects of biochar on ammonia emission during chicken manure composting[J].Jiangsu Agricultural Sciences,2019,47(7):236.
[7]施玉玉,张煜林,胡素萍,等.鸡粪生物炭对蔬菜土壤中沙门氏菌迁移和滞留存活的影响[J].江苏农业科学,2021,49(5):232.
 Shi Yuyu,et al.Effects of chicken manure biochar on migration and retention of Salmonella in vegetable soils[J].Jiangsu Agricultural Sciences,2021,49(7):232.

备注/Memo

备注/Memo:
收稿日期:2022-10-31
基金项目:国家自然科学基金青年科学基金(编号:51809076);中央高校基本科研业务费项目(编号:2019B08514);泰州市科技支撑计划(农业)项目(编号:SNY20208551、SNY20208534);国家重点研发计划蓝色粮仓科技创新项目(编号:2020YFD0900705);水利部重大科技项目(编号:SKR-2022070 )。
作者简介:翟森茂(1998—),男,山西阳泉人,硕士研究生,主要从事农业废弃物资源化利用研究。E-mail:1057191835@qq.com。
通信作者:邵孝候,博士,教授,主要从事农业水土环境保护研究。E-mail:shaoxiaohou@163.com。
更新日期/Last Update: 2023-04-05