|本期目录/Table of Contents|

[1]刘昊贶,徐聪,孙丽,等.生物炭和聚丙烯酰胺施用对土壤有机碳含量的影响及生态经济效益分析[J].江苏农业科学,2023,51(12):215-222.
 Liu Haokuang,et al.Effects of biochar and polyacrylamide application on soil organic carbon content and evaluation of ecological economic benefit[J].Jiangsu Agricultural Sciences,2023,51(12):215-222.
点击复制

生物炭和聚丙烯酰胺施用对土壤有机碳含量的影响及生态经济效益分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第12期
页码:
215-222
栏目:
资源与环境
出版日期:
2023-06-20

文章信息/Info

Title:
Effects of biochar and polyacrylamide application on soil organic carbon content and evaluation of ecological economic benefit
作者:
刘昊贶12徐聪12孙丽2朱翰绅12李冠霖1汪吉东23张永春12
1.江苏大学环境与安全工程学院,江苏镇江 212013; 2.江苏省农业科学院农业资源与环境研究所/农业农村部江苏耕地保育科学观测站,江苏南京 210014; 3.江苏大学农业装备工程学院,江苏镇江 212013
Author(s):
Liu Haokuanget al
关键词:
生物炭聚丙烯酰胺免耕有机碳净生态经济效益
Keywords:
-
分类号:
S158.5
DOI:
-
文献标志码:
A
摘要:
为探究在黄河故道区中低产田平衡作物生产力、经济效益和生态可持续性的综合改良方案,通过田间试验方法,设置耕作方式、聚丙烯酰胺(PAM)施用、生物炭施用3个因素各2个水平,共8个处理,对作物产量、土壤有机碳(SOC)含量、土壤团聚体组成、净生态经济效益(NEEB)等指标进行分析。结果表明,生物炭施用分别提高SOC含量、大团聚体含量和作物产量6.7%~23.3%、1.7%~10.3%和1.74%~5.14%(P<0.05)。每提升1%的大团聚体含量,可提升0.379 1 g/kg的SOC;每提升1 g/kg的SOC,可以提升0.186 9 t/hm2产量。耕作方式对SOC储量影响显著,相同物料施用下免耕处理的SOC储量、大团聚体含量和作物产量均高于旋耕处理,但仅施PAM处理对SOC含量、大团聚体含量及产量无显著影响(P>0.05)。线性回归模型表明,SOC含量分别与大团聚体含量和作物产量呈极显著正相关关系(P<0.01),表明提升土壤团聚性和SOC含量是作物增产的关键因素。免耕条件下,PAM与生物炭配施处理下的SOC含量、产量均为最高,分别为11.95 g/kg和1.11 t/hm2,且温室气体排放成本为各处理中最低,可作为兼顾作物生产力和生态效益的改良方案,但由于投入成本提高,生物炭与PAM配施措施下的农户经济效益和NEEB较对照均显著降低,因此从粮食安全及生态改善角度考虑,应完善生态补偿机制,以调动农户积极性,促进改良措施落地。
Abstract:
-

参考文献/References:

[1]Lyu F R,Deng L Y,Zhang Z T,et al. Multiscale analysis of factors affecting food security in China,1980—2017[J]. Environmental Science and Pollution Research International,2022,29(5):6511-6525.
[2]Yan H M,Ji Y Z,Liu J Y,et al. Potential promoted productivity and spatial patterns of medium-and low-yield cropland land in China[J]. Journal of Geographical Sciences,2016,26(3):259-271.
[3]Xu C,Wang J D,Wu D,et al. Optimizing organic amendment applications to enhance carbon sequestration and economic benefits in an infertile sandy soil[J]. Journal of Environmental Management,2022,303:114129.
[4]徐聪,吴迪,王磊,等. 菌渣施用对黄河故道区低产田土壤理化性质、小麦根系生长和产量的影响[J]. 土壤,2021,53(3):491-498.
[5]Yan M,Pan G X,Lavallee J M,et al. Rethinking sources of nitrogen to cereal crops[J]. Global Change Biology,2020,26(1):191-199.
[6]Smith P,House J I,Bustamante M,et al. Global change pressures on soils from land use and management[J]. Global Change Biology,2016,22(3):1008-1028.
[7]Li J,Wen Y C,Li X H,et al. Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China Plain[J]. Soil and Tillage Research,2018,175:281-290.
[8]Niu L G,Hao J M,Zhang B Z,et al. Influences of long-term fertilizer and tillage management on soil fertility of the North China plain[J]. Pedosphere,2011,21(6):813-820.
[9]Schulz H,Dunst G,Glaser B. Positive effects of composted biochar on plant growth and soil fertility[J]. Agronomy for Sustainable Development,2013,33(4):817-827.
[10]Liu B J,Cai Z H,Zhang Y C,et al. Comparison of efficacies of peanut shell biochar and biochar-based compost on two leafy vegetable productivity in an infertile land[J]. Chemosphere,2019,224:151-161.
[11]董林林,何建桥,陆长婴,等. 生物质炭配施蚯蚓粪提升土壤有机碳对水稻生长的影响[J]. 中国土壤与肥料,2021(2):87-95.
[12]夏海江,肇普兴. PAM对土壤物理性质影响的试验研究[J]. 东北水利水电,1999,17(7):7-8.
[13]李娜,耿玉清,赵新宇,等. 生物炭和PAM混施影响煤矸石基质水分的入渗和蒸发[J]. 水土保持学报,2020,34(2):290-295.
[14]Hijbeek R,Pronk A A,Ittersum M K,et al. Use of organic inputs by arable farmers in six agro-ecological zones across Europe:drivers and barriers[J]. Agriculture Ecosystems & Environment,2019,275:42.
[15]Han X,Xu C,Dungait J A J,et al. Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China:a system analysis[J]. Biogeosciences,2018,15(7):1933-1946.
[16]Amelung W,Bossio D,de Vries W,et al. Towards a global-scale soil climate mitigation strategy[J]. Nature Communications,2020,11(1):1-10.
[17]Zhou J,Li B,Xia L L,et al. Organic-substitute strategies reduced carbon and reactive nitrogen footprints and gained net ecosystem economic benefit for intensive vegetable production[J]. Journal of Cleaner Production,2019,225:984-994.
[18]Song K F,Zhang G B,Yu H Y,et al. Evaluation of methane and nitrous oxide emissions in a three-year case study on single rice and ratoon rice paddy fields[J]. Journal of Cleaner Production,2021,297:126650.
[19]鲍士旦. 土壤农化分析[M]. 3版.北京:中国农业出版社,2000:20-39.
[20]Charles A,Rochette P,Whalen J K,et al. Global nitrous oxide emission factors from agricultural soils after addition of organic amendments:a meta-analysis[J]. Agriculture,Ecosystems & Environment,2017,236:88-98.
[21]Field C B,Barros V R,Dokken D J,et al. Climate-resilient pathways:adaptation,mitigation,and sustainable development[M]//Climate change 2014:impacts,adaptation,and vulnerability. London:Cambridge University Press,2015:1101-1131.
[22]Xu C,Han X,Bol R,et al. Impacts of natural factors and farming practices on greenhouse gas emissions in the North China Plain:a meta-analysis[J]. Ecology and Evolution,2017,7(17):6702-6715.
[23]Huang S,Zeng Y J,Wu J F,et al. Effect of crop residue retention on rice yield in China:a meta-analysis[J]. Field Crops Research,2013,154:188-194.
[24]Shi S W,Zhang Q Z,Lou Y L,et al. Soil organic and inorganic carbon sequestration by consecutive biochar application:results from a decade field experiment[J]. Soil Use and Management,2021,37(1):95-103.
[25]Cui Y F,Meng J,Wang Q X,et al. Effects of straw and biochar addition on soil nitrogen,carbon,and super rice yield in cold waterlogged paddy soils of North China[J]. Journal of Integrative Agriculture,2017,16(5):1064-1074.
[26]Dong L L,Wang J D,Shen M X,et al. Biochar combined with nitrogen fertilizer affects soil properties and wheat yield in medium-low-yield farmland[J]. Soil Use and Management,2022,38(1):584-595.
[27]Schmidt H P,Kammann C,Hagemann N,et al. Biochar in agriculture—A systematic review of 26 global meta-analyses[J]. GCB Bioenergy,2021,13(11):1708-1730.
[28]Zou C M,Li Y,Huang W,et al. Rotation and manure amendment increase soil macro-aggregates and associated carbon and nitrogen stocks in flue-cured tobacco production[J]. Geoderma,2018,325:49-58.
[29]Zhang X F,Xin X L,Zhu A N,et al. Effects of tillage and residue managements on organic C accumulation and soil aggregation in a sandy loam soil of the North China Plain[J]. Catena,2017,156:176-183.
[30]李元元,王占礼. 聚丙烯酰胺(PAM)防治土壤风蚀的研究进展[J]. 应用生态学报,2016,27(3):1002-1008.
[31]曹丽花,赵世伟,梁向锋,等. PAM对黄土高原主要土壤类型水稳性团聚体的改良效果及机理研究[J]. 农业工程学报,2008,24(1):45-49.
[32]Yang L X,Li S C,Sun H L,et al. Polyacrylamide molecular formulation effects on erosion control of disturbed soil on steep rocky slopes[J]. Canadian Journal of Soil Science,2011,91(6):917-924.
[33]唐泽军,雷廷武,张晴雯,等. 聚丙烯酰胺增加土壤降雨入渗减少侵蚀的模拟试验研究 Ⅰ入渗[J]. 土壤学报,2003,40(2):178-185.
[34]Wardak D L R,Padia F N,de Heer M I,et al. Zero tillage has important consequences for soil pore architecture and hydraulic transport:a review[J]. Geoderma,2022,422:115927.
[35]郑凤君,王雪,李生平,等. 免耕覆盖下土壤水分、团聚体稳定性及其有机碳分布对小麦产量的协同效应[J]. 中国农业科学,2021,54(3):596-607.
[36]李景,吴会军,武雪萍,等. 长期免耕和深松提高了土壤团聚体颗粒态有机碳及全氮含量[J]. 中国农业科学,2021,54(2):334-344.
[37]张妙. 生物炭与PAM共施对土壤水分、玉米生理特性及产量的影响[D]. 杨凌:西北农林科技大学,2018:36-37.
[38]Wu H X,Ge Y. Excessive application of fertilizer,agricultural non-point source pollution,and farmers policy choice[J]. Sustainability,2019,11(4):1165.
[39]Zhao Y X,Chen Y Q,Dai H C,et al. Effects of organic amendments on the improvement of soil nutrients and crop yield in sandy soils during a 4-year field experiment in Huang-Huai-Hai plain,Northern China[J]. Agronomy,2021,11(1):157.
[40]史思伟,娄翼来,杜章留,等. 生物炭的10年土壤培肥效应[J]. 中国土壤与肥料,2018(6):16-22.

相似文献/References:

[1]阙小峰,缪建芹,司文会,等.聚丙烯酰胺澄清苹果汁工艺及其机理分析[J].江苏农业科学,2014,42(11):310.
 Que Xiaofeng,et al(0).Study on process and mechanism of polyacrylamide to clarify apple juice[J].Jiangsu Agricultural Sciences,2014,42(12):310.
[2]王丽学,李振鹏,刘四平,等.玉米在不同覆盖方式处理下的土壤水温差异[J].江苏农业科学,2016,44(03):82.
 Wang Lixue,et al.Differences of soil moisture and temperature under different mulching treatments of maize[J].Jiangsu Agricultural Sciences,2016,44(12):82.
[3]王桂君,许振文,田晓露,等.生物炭对盐碱化土壤理化性质及小麦幼苗生长的影响[J].江苏农业科学,2013,41(12):390.
 Wang Guijun,et al.Effects of biochar on physiochemical properties of soil and growth of wheat seedlings in saline-alkali soil[J].Jiangsu Agricultural Sciences,2013,41(12):390.
[4]张学艳,曹莹,孟军,等.生物炭对镉胁迫下水稻生长及光合产量的影响[J].江苏农业科学,2016,44(05):97.
 Zhang Xueyan,et al.Effect of biochar on growth and photosynthesis yield of rice under stress of cadmium[J].Jiangsu Agricultural Sciences,2016,44(12):97.
[5]邱月,张辉.包膜氮肥、保水剂和生物炭在控制农田土壤氮素损失方面的应用综述[J].江苏农业科学,2015,43(10):417.
 Qiu Yue,et al.Application of coated fertilizer, water retention agent and biochar in controlling nitrogen loss in agricultural soil:a review[J].Jiangsu Agricultural Sciences,2015,43(12):417.
[6]杨晓庆,侯仔尧,常梦婷,等.改良剂对Cd污染土壤的修复作用[J].江苏农业科学,2015,43(07):423.
 Yang Xiaoqing,et al.Effect of modifying agent on restoration of Cd contaminated soil[J].Jiangsu Agricultural Sciences,2015,43(12):423.
[7]杨晓庆,侯仔尧,常梦婷,等.生物炭对镉污染土壤的修复研究[J].江苏农业科学,2015,43(06):335.
 Yang Xiaoqing,et al.Study on remediation of Cd contaminated soil by biochar[J].Jiangsu Agricultural Sciences,2015,43(12):335.
[8]张闻,赵延君,王加宁,等.生物炭固定化石油降解菌剂的制备[J].江苏农业科学,2015,43(06):341.
 Zhang Wen,et al.Preparation of biochar-immobilized microbial agent with high petroleum-degrading ability[J].Jiangsu Agricultural Sciences,2015,43(12):341.
[9]郑悦,郑桂萍,赵洋,等.生物炭对粳稻垦鉴稻5号穗部性状及产量的影响[J].江苏农业科学,2015,43(06):59.
 Zheng Yue.Effects of biochar on panicle traits and yield of japonica rice cultivar “Kenjiandao No.5”[J].Jiangsu Agricultural Sciences,2015,43(12):59.
[10]彭辉辉,刘强,荣湘民,等.生物炭、有机肥与化肥配施对春玉米光合特性的影响[J].江苏农业科学,2016,44(07):132.
 Peng Huihui,et al.Effects of combined application of charcoal,manure and chemical fertilizer on photosynthetic characteristics of spring corn[J].Jiangsu Agricultural Sciences,2016,44(12):132.
[11]张晓花,宋娅丽,王克勤,等.不同改良剂施用对滇中植烟土壤酶活性的影响[J].江苏农业科学,2024,52(6):242.
 Zhang Xiaohua,et al.Influence of different amendments on enzyme activity in tobacco-growing soil in central Yunnan[J].Jiangsu Agricultural Sciences,2024,52(12):242.

备注/Memo

备注/Memo:
收稿日期:2022-08-30
基金项目:江苏省重点研发计划(编号:BE2019378);江苏省农业科技自主创新资金[编号:CX(21)1009];国家甘薯产业技术体系建设专项(编号:CARS-10);国家自然科学基金(编号:41907069)。
作者简介:刘昊贶(1997—),男,江苏常州人,硕士研究生,研究方向为土壤肥力提升。E-mail:liuhaokuang1@163.com。
通信作者:徐聪,博士,副研究员,研究方向为土壤养分循环与土壤肥力提升,E-mail:cxu@jaas.ac.cn;张永春,博士,研究员,研究方向为作物营养与施肥,E-mail:yczhang66@sina.com。
更新日期/Last Update: 2023-06-20